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Abstract
Hierarchical models enjoy great popularity due to their ability to handle het-
erogeneous groups of observations by leveraging on their underlying common
structure. In a Bayesian nonparametric framework, the hierarchy is intro-
duced at the level of group-specific random measures, and then translated
to the observations’ level via suitable transformations. In this work, we pro-
pose a new strategy to derive closed-form expressions for the marginal and
posterior distributions of each group. Indeed, by directly inserting a suitable
set of latent variables into the generative model for the data, we unravel a
common core shared by the different hierarchical constructions proposed in
the Bayesian nonparametric literature. Specifically, we identify a key iden-
tity that underlies these models and highlight its role in the derivation of
quantities of interest.
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1 Introduction

In a Bayesian framework, X–valued observations from a homogeneous pop-
ulation are modeled as an (infinitely extendable) exchangeable sequence,
which means that their distribution does not depend on the order of appear-
ance (de Finetti, 1937). By de Finetti’s representation theorem, this is equiv-
alent to stating that the observations (Xn)n≥1 are conditionally independent
and identically distributed (i.i.d.) given a random probability measure P̃ ,
taking values in the space of probability measures on X, denoted as P.
Hence, one has

X1, . . . , Xn | P̃
i.i.d.∼ P̃ , n ≥ 1,

P̃ ∼ Q,
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where Q is known as the de Finetti measure and acts as prior distribu-
tion for Bayesian inference. If Q does not degenerate on a subset of P
indexed by a finite-dimensional parameter, we are considering a nonpara-
metric setting, the one of interest to the present paper. The model choice
then reduces to identifying a suitable distribution for the random probabil-
ity measure P̃ . Probability measures may be characterized in many different
ways, including their probability mass or density function, cumulative dis-
tribution function or survival function, cumulative hazard, and hazard rate
function. Each representation highlights different features of the distribu-
tion, and may be preferred to the others depending on the main target of
the analysis. For this reason, different Bayesian nonparametric models have
focused on each of these representations (with seminal contributions in Dok-
sum (1974), Dykstra and Laud (1981), Ferguson (1973, 1974), Hjort (1990),
Lo (1984), Walker and Muliere (1997)), which share one common feature:
the random probability measure P̃ is modeled as a suitable transformation
of a completely random measure μ̃. Indeed, completely random measures
(Kingman, 1967) are a remarkable class of discrete random measures that
lends itself to modeling both discrete functions, thanks to their almost-sure
discrete nature, and continuous ones, typically through kernel smoothing.
Moreover, completely random measures feature an infinite number of ran-
dom atoms and random weights, which guarantees full-modeling flexibility of
many quantities of interest; see Lijoi and Prünster (2010) for a review using
completely random measures as unifying concept. We will consider almost
surely finite completely random measures without drift and fixed atoms,
which can be conveniently represented as

μ̃(dx) =
∑

i≥1

Ji δθi
(dx),

where (Ji)i≥1 is a sequence of random jumps and (θi)i≥1 is a sequence of
i.i.d. atoms (points of discontinuity), whose common distribution is termed
base probability measure. In view of the upcoming discussion, it is relevant
to point out that, when such a measure is diffuse, the atoms are distinct
almost surely.

Recent developments in Bayesian nonparametrics are focused on flexible
ways to account for different forms of heterogeneity across observations; see
Cifarelli and Regazzini (1978) and MacEachern (1999, 2000) for pioneering
works and Quintana et al. (2022) for a recent review. A particularly rele-
vant framework is that of partial exchangeability (de Finetti, 1938), which
allows to model multiple groups of observations sharing similar features, with
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homogeneity (exchangeability) holding only within each group but not across
groups. Typical instances include patients with the same disease treated in
different hospitals, or children of the same age raised in different countries.
In this setting, the distribution in each group can be modeled by means of a
group-specific completely random measure, and since the groups share sim-
ilar features, it is important to incorporate borrowing of information across
different groups. This goal is naturally met by the Bayesian paradigm: if
dependence among the random measures is introduced a priori, the posterior
distribution for each group will also make use of the information contained
in the other groups. This typically induces a shrinkage effect that makes
the estimates more reliable and disappears as the number of observations
diverges.

The previous discussion raises the fundamental question of how to intro-
duce dependence among random measures, which has been addressed from
several different perspectives in the vast literature on the topic. De Iorio et al.
(2004) develop the dependent Dirichlet process framework of MacEachern
(1999, 2000) by imposing an ANOVA-type structure on the atoms, while
Dunson and Park (2008) and Rodŕıguez and Dunson (2011) model predictor-
dependent weights via kernel and probit transformations. As for the partially
exchangeable setting, proposals inducing dependence across different groups
of observations include additive (Müller et al., 2004, Lijoi et al., 2014), nested
(Rodriguez et al., 2008, Camerlenghi et al., 2019a, Lijoi et al. 2023) and hier-
archical structures (Teh et al., 2006, Camerlenghi et al., 2019b, 2021). Fur-
ther interesting constructions of dependent completely random measures,
based on multivariate Lévy intensities, can be found in Epifani and Lijoi
(2010), Griffin and Leisen (2017), Lau and Cripps (2022), Riva-Palacio and
Leisen (2021). See also the recent review by Quintana et al. (2022) and
references therein.

Among these constructions, hierarchical forms of dependence are arguably
the most natural ones for a Bayesian statistician: being used to introduce
dependence among the observations through conditional independence, it is
conceptually straightforward to introduce dependence among the random
measures through conditional independence as well. Thanks to de Finetti’s
representation theorem, this leads to an (infinitely extendable) exchangeable
sequence of random measures. A compelling strategy to define conditionally
independent completely random measures consists in assuming a random
base measure, which is modeled either through a normalized completely
random measure or directly through a completely random measure. The
first approach has been mainly used to model dependent random discrete
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probability measures (Teh et al., 2006, Camerlenghi et al., 2019b), whereas
the second has been used to provide the main ingredients to model dependent
random hazard functions (Camerlenghi et al., 2021), though it is probably
interesting to remark that, in principle, they could both be used to model
both quantities.

These two classes of hierarchical models entail different dependence
assumptions on the random measures; however, they also present significant
conceptual and mathematical similarities. In this paper, we investigate these
similarities and propose a unifying framework that sheds light on their com-
mon structure and on intriguing analogies in their posterior and predictive
representations. Indeed, even if dealing with hierarchical models may appear
more challenging than treating simpler exchangeable ones, they both rely on
the same identity, which can be applied recursively to reduce the analysis of
the multi-group framework to the easier single-group scenario. Specifically,
consider a completely random measure μ̃ with a diffuse base probability mea-
sure, i.e. whose atoms are distinct almost surely. For any non-negative mea-
surable function f , and mutually disjoint balls Bε(x∗

j ) = {x : d(x, x∗
j ) < ε},

one can explicitly characterize the limiting behavior of

E

⎡

⎣exp
{

−
∫

X

f(x) μ̃(dx)
} k∏

j=1

μ̃(Bε(x∗
j ))

nj

⎤

⎦ , (1)

as ε → 0, as recalled in (14) of Section 5. From this identity, one can derive
the law of the random partition of the exchangeable observations according
to their ties, which in turn determines both the predictive and posterior
distributions, as shown in James et al. (2006, 2009).

At first sight, it seems difficult to extend this strategy to the multi-
group hierarchical framework. Indeed, the base probability measure of each
exchangeable completely random measure is modeled as an almost-surely dis-
crete random measure itself. This implies that the atoms of such measures
display ties with positive probability and thus do not fit into the above frame-
work. Camerlenghi et al. (2019b, 2021) work around this issue by exploiting
the celebrated Faà di Bruno’s formula, expressing higher order derivatives of
compositions of functions: eventually, the inherent combinatorial structure
induced by this formula turns out to be effectively represented by introduc-
ing suitable latent variables. Leveraging on this observation, here we propose
an alternative approach that bypasses the Faà di Bruno Formula by directly
inserting the latent variables into the data generative model. From an ana-
lytical point of view, this strategy substantially mitigates the combinatorial
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burden connected to the Faà di Bruno’s formula, at the negligible cost of
an augmented Lévy intensity measure. In addition, the description of the
induced random partition structure becomes more transparent, as it can be
considered a mere consequence of the ties within sequences of latent (unob-
served) variables.

The intuition behind our proposal is the following: by adding a diffuse
independent mark to each atom of the exchangeable random measure, one
derives a completely random measure on the joint space of the atoms and
the marks with the compelling property of not displaying ties almost surely.
One can, then, use (1) on the augmented random measure and possibly
remove the auxiliary latent marks through marginalization. Remarkably, this
strategy leads to posterior and predictive representations for both classes of
hierarchical models, thanks to a fundamental identity that extends (1) to
hierarchical random measures. In Basu and Tiwari (1982), which stands out
as an insightful contribution to the foundations of the Dirichlet process, the
authors state a crucial desirable property for nonparametric models: “If a
prior is selected from this class, then the posterior distribution given a sam-
ple of observations from P is manageable analytically, and it belongs to the
class, i.e. the class is closed under ‘Bayesian operation’.” Our paper shows
that the two considered classes of hierarchical nonparametric priors meet
this desideratum by developing the necessary analytical tools and suitably
extending the notion of closure to fit the more complex partially exchange-
able framework.

The paper is structured as follows. Section 2 recalls the definition of com-
pletely random measure (CRM), along with two transformations that are
important for the following developments, namely, normalization of CRMs
to model discrete random probability measures and kernel mixtures of CRMs
to model random hazards. Section 3 introduces dependence between CRMs
through two related hierarchical constructions. Section 4 provides some intu-
ition on the partition structure and introduces a convenient set of latent
variables, representing the marks of the atoms in the previous discussion.
Its formal treatment can be found in Section 5, together with the key iden-
tity for closed-form computations involving CRMs, which is then exploited
to derive marginal distributions. The posterior characterization of CRMs is
described in Section 6 for both classes of hierarchical models. In light of
these results, the generalized gamma CRM arises as the natural conjugate
prior, as discussed in Section 7. Section 8 provides further insights on the
dependence structure between hierarchical random measures, together with
some intuition on how to enhance its flexibility.
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2 Background on Completely Random Measures

Let (X, X ) be a complete and separable metric space. Denote by M the space
of boundedly finite measures on (X, X ) equipped with the corresponding
Borel σ-algebra M, that is, the smallest σ-algebra that makes the projections
A �→ μ(A) measurable for every measure μ and every bounded set A; see
Daley and Vere-Jones (2007) for details. A random element μ̃ defined on
some probability space (Ω, F ,P) and taking values in (M, M) is termed
random measure.

A Completely Random Measure (CRM) μ̃ is a random measure on (X, X )
such that, for any collection of n ≥ 1 bounded and pairwise disjoint sets
A1, . . . , An ∈ X , the random variables μ̃(A1), . . . , μ̃(An) are mutually inde-
pendent (Kingman, 1967). CRMs represent a very natural and convenient
choice of discrete random measures: their key role in Bayesian nonparamet-
rics is extensively discussed in Lijoi and Prünster (2010).

In this work, we consider CRMs without fixed points of discontinuity and
without deterministic drift: a CRM belonging to this class can be represented
as a linear functional of a Poisson Random Measure (PRM) Ñ on R

+ × X,

μ̃(dx) d=
∫

R+

s Ñ(ds, dx). (2)

Therefore, its realizations are almost surely discrete, and its law is charac-
terized by the Laplace functional transform at any non-negative measurable
function f : X �→ R

+, namely

E

[
exp

{
−

∫

X

f(x) μ̃(dx)
}]

= exp
{

−
∫

R+×X

(1 − e−s f(x)) ν(ds, dx)
}

, (3)

where ν is the Lévy intensity measure uniquely identifying μ̃. Note that ν
is the mean intensity measure of the PRM Ñ in (2), and must satisfy the
condition ∫

R+×X

min(s, 1) ν(ds, dx) < ∞.

This characterization motivates the notation μ̃ ∼ CRM(ν). The Lévy inten-
sity measure ν can be always disintegrated as

ν(ds, dx) = ρ(ds|x)α(dx), (4)

where ρ : B(R+) × X �→ R
+ is a transition kernel and α is a diffuse σ-

finite measure on (X, X ). Lévy intensities, and the corresponding CRMs, are
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termed homogeneous if ρ(·|x) = ρ(·) is a measure not depending on x ∈ X,
and non-homogeneous otherwise. An exhaustive account on CRMs can be
found in Kingman (1993).

In the following, homogeneous CRMs are considered for their simplicity
and tractability. Intuitively, this is equivalent to the independence between
atoms and jumps of the random measure. Moreover, the measure α appearing
in (4) is assumed to be finite, which ensures that the random measure is finite
almost surely. This implies that the total mass of α can be included into the
transition kernel ρ, and the Lévy intensity measure is uniquely disintegrated
as

ν(ds, dx) = ρ(ds)P0(dx),

with P0 a diffuse probability measure on (X, X ) termed base probability mea-
sure; later on, it will be sometimes useful to rely on this representation rather
than on (4). The infinite activity property of the Lévy intensity measure is
also assumed, namely ρ(R+) = ∞, which implies that the corresponding
random measure has an infinite number of jumps on any bounded set, and
thus ensures it is non-zero almost surely. Further details can be found in
Regazzini et al. (2003).

In Bayesian Nonparametrics, (completely) random measures can be effec-
tively used as the basic building block for the construction of discrete non-
parametric priors. This work focuses on random probability measures and
random hazards obtained from two suitable transformations of random mea-
sures: normalization and kernel mixtures.

Normalized random measures An almost surely discrete random prob-
ability measure p̃ can be defined via normalization of a random measure μ̃
as

p̃(dx) :=
μ̃(dx)
μ̃(X)

, (5)

provided that 0 < μ̃(X) < ∞ almost surely. In case μ̃ is a homogeneous CRM,
these conditions are guaranteed by the finiteness of α and the infinite activ-
ity property, as proved in Regazzini et al. (2003), where this normalization
procedure has first been introduced. A posterior characterization of normal-
ized CRMs has been derived in James et al. (2009) for the exchangeable
setting. Popular special instances include the Dirichlet process (Ferguson,
1973), which arises from normalization of gamma CRMs (Ferguson, 1974),
the normalized σ–stable process (Kingman, 1975), the normalized inverse
Gaussian process (Lijoi et al., 2005) and the normalized generalized gamma
process (Lijoi et al., 2007). Their use in mixture models is reviewed in Bar-
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rios et al. (2013). Henceforth, whenever μ̃ ∼ CRM(ν), its normalization p̃ in
(5) is denoted by p̃ ∼ NCRM(ν).

Random mixture hazards In survival analysis, the time to failure is usu-
ally modeled by a random variable T , taking values on R

+, whose probability
distribution is here assumed to be absolutely continuous with respect to the
Lebesgue measure. The hazard rate function of T represents the instanta-
neous risk of failure, and is defined as

h(t) :=
f(t)
S(t)

, t ∈ R,

where f is the density function of T and S is its survival function. A random
hazard rate h̃ can be defined mixing a non-negative kernel k over a random
measure μ̃ as

h̃(t) :=
∫

X

k(t; x) μ̃(dx). (6)

Such mixture structure was introduced in pioneering papers by Dykstra and
Laud (1981) and Lo and Weng (1989), and developed in full generality by
James (2005), where the posterior characterization is derived for exchange-
able data.

The random survival function associated to this random hazard rate is

S̃(t) = exp
{

−
∫ t

0

∫

X

k(s; x) μ̃(dx) ds

}
, (7)

which is a proper survival function whenever limt→∞ S̃(t) = 0 almost surely.
In case μ̃ is a homogeneous CRM, this condition is guaranteed by infinite
activity and the condition

∫

R+

k(s; x) ds = ∞, P0 − a.s.

The most popular kernel was proposed in Dykstra and Laud (1981), where
the authors assume X = R

+ and define k(t; x) = β(x)1t≥x, for β positive
and right-continuous function. Such kernel satisfies the condition above and
represents the reference model for increasing hazard rates. Further method-
ological, computational and asymptotic investigations with different kernels
and choices of CRMs can be found, e.g., in Ishwaran and James (2004),
Nieto-Barajas and Walker (2004), Peccati and Prünster (2008), De Blasi
et al. (2009), Donnet et al. (2017), Catalano et al. (2020).
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3 Hierarchical Random Measures

Hierarchical structures represent a natural way to construct vectors of depen-
dent random measures. Indeed, dependence in a vector of random measures
µ̃ can be induced through the following hierarchical scheme:

µ̃ = (μ̃1, . . . , μ̃D) | μ̃0
i.i.d.∼ G̃,

μ̃0 ∼ G0,
(8)

where G̃ is the (random) conditional distribution of each μ̃d, for d = 1, . . . , D,
given the random measure μ̃0, which represents the root of the hierarchy and
is distributed according to G0.

Completely random measures are particularly well-suited to this hier-
archical structure, as the random measure μ̃0 at the root of the hierarchy
can be easily incorporated into the Lévy intensity measure characterizing
the distribution G̃ of the vector at the lower level of the hierarchy. We dis-
tinguish two different hierarchical constructions that are commonly used to
model dependent random probabilities and dependent hazards, respectively.

A vector of dependent discrete random probability measures can be
defined through the hierarchical structure

p̃ = (p̃1, . . . , p̃D) | p̃0
i.i.d.∼ NCRM(ν̃),

p̃0 ∼ NCRM(ν0),
(9)

where p̃1, . . . , p̃D are conditionally independent normalized CRMs with ran-
dom Lévy intensity measure

ν̃(ds, dx) = ρ(ds) p̃0(dx),

and p̃0 is a normalized CRM with Lévy intensity measure ν0(ds, dx) =
ρ0(ds)P0(dx). This hierarchical nonparametric construction was first intro-
duced in Teh et al. (2006) for the special case of hierarchical Dirichlet pro-
cesses, and extensively studied in Camerlenghi et al. (2019b) for the more
general class of processes considered here. Further investigations beyond the
Dirichlet setup can be found, e.g., in Teh and Jordan (2010), Camerlenghi
et al. (2017, 2018), Catalano et al. (2022).

In the case of random mixture hazard models, normalization of random
measures is not needed to define the nonparametric prior, since it results
from the combination of dependent non-normalized random measures with
suitable kernels. The hierarchical structure defining the vector of underlying
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dependent random measures is

µ̃ = (μ̃1, . . . , μ̃D) | μ̃0
i.i.d.∼ CRM(ν̃),

μ̃0 ∼ CRM(ν0),
(10)

where μ̃1, . . . , μ̃D are conditionally independent CRMs with random Lévy
intensity measure

ν̃(ds, dx) = ρ(ds) μ̃0(dx),

and μ̃0 is a CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx).
This class of mixture hazard rates based on a hierarchical dependence struc-
ture of the underlying random measures was introduced in Camerlenghi et al.
(2021). An alternative approach to define dependent mixture hazards can be
found in Lijoi and Nipoti (2014).

4 Random Partitions and Latent Variables

Consider an array of partially exchangeable sequences with de Finetti mea-
sure featuring the hierarchically dependent specification discussed in the pre-
vious section. The almost-sure discreteness of (normalized) CRMs naturally
induces a random partition structure, with groups including elements both
within and across such partially exchangeable sequences. We illustrate this
partition structure through the hierarchical prior specification in (9), based
on normalized random measures. However, it characterizes every Bayesian
nonparametric model built upon hierarchical CRMs priors, being a property
of the hierarchical structure itself rather than of the specific model.

Consider the array of D partially exchangeable samples

Xd = (Xd1, . . . , XdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

p̃ = (p̃1, . . . , p̃D) ∼ QD,
(11)

for integers N1, . . . , ND ≥ 1, where QD is the hierarchical prior in (9). The
almost-sure discreteness and dependence of the random probability mea-
sures in p̃ imply that tied values occur with positive probability both within
and across samples, that is P(X�i = Xκj) > 0 for any � and κ. Therefore,
a random partition of the observations is naturally induced, whereby two
elements are in the same partition group if and only if they have the same
value. Denote by X∗

1 , . . . , X∗
k the k distinct values assumed in the D partially

exchangeable samples, with respective multiplicities n1, . . . , nk.
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As a consequence, elements belonging to the same partition group may or
may not belong to the same sample, which means that there is no structural
relationship between the random partition induced by tied values and the
natural one determined by the D samples. Let ndj be the number of elements
in sample d belonging to group j,

ndj =
Nd∑

i=1

1Xdi=X∗
j
, d = 1, . . . , D, j = 1, . . . , k.

However, given the two-fold nature of the partition structure, observed values
are not enough to fully characterize its complexity. It is therefore convenient
to introduce corresponding sequences of latent variables

Zd = (Zd1, . . . , ZdNd
), d = 1, . . . , D,

taking values on a complete and separable metric space (T, T ), which them-
selves admit ties with positive probability. These latent variables are for-
mally introduced in the next section for both normalized random measures
and random mixture hazards models, and allow to describe a finer par-
tition structure, featuring ties within each sample (but not across sam-
ples); this greatly simplifies the learning scheme. In particular, for each
sample d and each group j, consider the ndj elements in Xd for which
Xdi = X∗

j holds. The corresponding elements in Zd may themselves show
ties: denote by Z∗

dj1, . . . , Z
∗
djrdj

their rdj distinct values, with multiplicities
qdj1 + · · · + qdjrdj

= ndj . Notice that, whenever Zdi = Zdi′ then Xdi = Xdi′ ,
i.e. a tie among values in Zd implies a tie among the corresponding elements
in Xd, while the converse is not necessarily true. Moreover, let rj be the
partial sum of elements in (rdj)dj with respect to d, and let r be their total
sum.

An intuitive description of the partition structure introduced in this sec-
tion is provided by the well-known Chinese restaurant franchise metaphor,
first presented in Teh et al. (2006) for the hierarchical Dirichlet process.
According to this scheme, a franchise consists of D restaurants sharing the
same menu, which includes an infinite number of dishes; each restaurant has
infinitely many tables and the customers seated at the same table eat the
same dish. Customers arriving at each restaurant may choose to either sit
at a table with other customers, thus eating the dish already served at that
table, or sit at an empty table, either eating a dish already served at other
tables in the franchise or eating a new dish from the menu. Notice that,
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in contrast to the simple Chinese restaurant metaphor, the same dish can
be served at different tables within the same restaurant and across differ-
ent restaurants. Embedding the partition structure described above in the
metaphor, element Xdi represents the dish served in restaurant d to cus-
tomer i, and the distinct values X∗

1 , . . . , X∗
k represent the k distinct dishes

served in the franchise, with ndj being the number of customers eating dish
j at restaurant d. Likewise, the latent variable Zdi represents the table in
restaurant d at which customer i is seated, with rdj being the number of
tables in restaurant d at which dish j is served, and qdjh being the number
of customers in restaurant d eating dish j at table h.

The sequences of latent variables introduced above can be explicitly
included in the hierarchical prior specifications by extending the random
measures at the lower level of the hierarchies to a larger space (as clarified
in the next section). Specifically, given the root of the hierarchy, the condi-
tionally independent (normalized) CRMs appearing in (9) and (10), namely
p̃1, . . . , p̃D and μ̃1, . . . , μ̃D, can be extended as random measures on T × X,
and characterized, respectively, by the random Lévy intensity measures

ν̃(ds, dz, dx) = ρ(ds)H(dz) p̃0(dx), ν̃(ds, dz, dx) = ρ(ds)H(dz) μ̃0(dx),

where H is an arbitrary diffuse probability measure on (T, T ). The random
measures on (X, X ) introduced in the original definition are easily recovered
via marginalization.

An interesting feature of this analytical device is the extension of the
(random) discrete components, defined on X, of the Lévy intensity measures
characterizing CRMs at the lower level of the hierarchies, to diffuse compo-
nents, defined on T×X, as a consequence of H being diffuse. Such property
turns out to be fundamental for the recursive application of the result in (14)
in presence of hierarchical schemes, as discussed in the following section.

5 The Key Identity for Random Measures

The availability of a framework to describe the random partition structure
induced by discrete hierarchical priors is a prerequisite for the determina-
tion of marginal and posterior distributions. In this respect, the possibility
to marginalize quantities of interest with respect to the prior represents the
cornerstone of computations with CRMs, and relies on a specific core struc-
ture, which leads to closed-form and tractable expressions.

Let μ̃ be a homogeneous CRM with Lévy intensity measure ν(ds, dx) =
ρ(ds)α(dx), where α is a finite diffuse measure on X; both its Laplace expo-
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nent and cumulants, defined respectively by

ψ(u) =
∫

R+

(
1 − e−us

)
ρ(ds), τ(m; u) =

∫

R+

sme−usρ(ds), (12)

play a crucial role in the investigation of the distributional properties of
μ̃. The core quantity representing the building block for every computation
with CRMs is

exp
{

−
∫

X

f(x)μ̃(dx)
} k∏

j=1

μ̃(Bε(x∗
j ))

nj (13)

where we recall that Bε(x∗
j ) = {x ∈ X : d(x, x∗

j ) < ε}, for j = 1, . . . , k,
are ε-balls centered at distinct values x∗

1, . . . , x
∗
k ∈ X, with multiplicities

n1, . . . , nk ≥ 1 such that
∑k

j=1 nj = n, and f : X �→ R
+ is any non-negative

measurable function. Computing the expectation of the quantity in (13), one
can show that

lim
ε→0

E

⎡

⎣exp
{

−
∫

X

f(x)μ̃(dx)
} k∏

j=1

μ̃(Bε(x∗
j ))

nj

⎤

⎦

k∏

j=1

α(Bε(x∗
j ))

= exp
{

−
∫

X

ψ(f(x))α(dx)
} k∏

j=1

τ(nj ; f(x∗
j )),

which can be informally rewritten as

E

⎡

⎣exp
{

−
∫

X

f(x) μ̃(dx)
} k∏

j=1

μ̃(dx∗
j )

nj

⎤

⎦

= exp
{

−
∫

X

ψ(f(x))α(dx)
} k∏

j=1

τ(nj ; f(x∗
j ))α(dx∗

j ). (14)

Formally, we can interpret the left-hand side of (14) as the (first) moment
measure of an exponentially tilted n-fold product measure of the CRM
μ̃, restricted to a specific subset of X

n. Indeed, μ̃(·)nj may be regarded
as the restriction of the nj-fold product measure of μ̃ to the diagonal
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Δnj
= {(x1, . . . , xnj

) ∈ X
nj : x1 = · · · = xnj

}, through the correspondence

μ̃(A)nj = μ̃nj
(
{(x, . . . , x︸ ︷︷ ︸

nj

) : x ∈ A}
)

= μ̃nj
(
(A × · · · × A︸ ︷︷ ︸

nj

) ∩ Δnj

)
,

which is non-zero due to the almost-sure discreteness of μ̃. Similarly,∏k
j=1 μ̃(dx∗

j )
nj may be identified with the restriction of the n-fold product

measure of μ̃ to a particular subspace of Xn. Specifically, for any 1 ≤ k ≤ n,
consider the linear subspaces of Xn of dimension k for which the n coordi-
nates can be partitioned into k groups with multiplicities n1, . . . , nk, where
coordinates in the same group take on the same value. The moment mea-
sure introduced above, restricted to each of such k-dimensional subspaces,
is shown in (14) to be absolutely continuous with respect to the product
measure αk, i.e. the k-fold product of α with itself, with Radon-Nikodym
derivative

exp
{

−
∫

X

ψ(f(x))α(dx)
} k∏

j=1

τ(nj ; f(x∗
j )),

where x∗
1, . . . , x

∗
k ∈ X are the k distinct values assumed by coordinates

belonging to the same group. Note that this density only depends on the
groups’ multiplicities n1, . . . , nk and distinct values x∗

1, . . . , x
∗
k, while the

coordinates’ ordering identifies the specific k-dimensional subspace where
the measure in (14) is concentrated. Moreover, such measure can be decom-
posed into the product of a constant exponential term and k independent
measures on X, each absolutely continuous with respect to the diffuse mea-
sure α.

This result is particularly suited to hierarchical structures of random
measures. Indeed, if μ̃ is defined through a hierarchical scheme and α is
itself a random measure, the same result can be applied recursively, since
the structure in (13) reappears for measure α in the right-hand side of (14).
Note that the equality above holds true only for diffuse choices of the finite
measure α, making it potentially useless if α is a CRM (thus having almost
surely discrete realizations). However, this issue is successfully addressed by
replacing the random measure μ̃ with its extended counterpart, as formally
described hereunder.

Let μ̃ be a homogeneous CRM with random Lévy intensity measure

ν(ds, dz, dx) = ρ(ds)H(dz) μ̃0(dx),
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where H is a diffuse probability measure on T and μ̃0 is itself a homoge-
neous CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx), for P0

a diffuse probability measure on X. The core quantity of interest, playing
the role of (13) for hierarchical schemes, is

exp
{

−
∫

T×X

f(x) μ̃(dz, dx)
} k∏

j=1

rj∏

h=1

μ̃(dz∗
jh, dx∗

j )
qjh , (15)

where x∗
1, . . . , x

∗
k ∈ X are distinct values, z∗

j1, . . . , z
∗
jrj

∈ T are the rj ≥ 1 dis-
tinct values corresponding to the same x∗

j with multiplicities qj1, . . . , qjrj
≥ 1

and such that
∑k

j=1 rj = r, and f : X �→ R
+ is any non-negative measurable

function. The expectation of such quantity with respect to the random mea-
sure μ̃ is computed by recursive application of (14), first at the lower level
and then at the root of the hierarchy, obtaining

E

⎡

⎣exp
{

−
∫

T×X

f(x) μ̃(dz, dx)
} k∏

j=1

rj∏

h=1

μ̃(dz∗
jh, dx∗

j )
qjh

⎤

⎦

= exp
{

−
∫

X

ψ0(ψ(f(x)))P0(dx)
} k∏

j=1

τ0(rj ; ψ(f(x∗
j )))P0(dx∗

j )

×
k∏

j=1

rj∏

h=1

τ(qjh; f(x∗
j ))H(dz∗

jh), (16)

where ψ0 and τ0 are defined as in (12) replacing ρ with ρ0. Similarly to the
non-hierarchical case, (16) defines a (first) moment measure of an exponen-
tially tilted n-fold product measure of the random measure μ̃ with itself,
which is here a measure on the space (T × X)n = T

n × X
n. Specifically,

consider the linear subspaces of Tn × X
n of dimension r × k for which the

2n coordinates can be grouped according to the partition structure encoded
into elements (qjh)jh. This moment measure, restricted to each of such sub-
spaces, is shown in (16) to be absolutely continuous with respect to the
product measure Hr × P k

0 , with Radon-Nikodym derivative

exp
{

−
∫

X

ψ0(ψ(f(x)))P0(dx)
} k∏

j=1

τ0(rj ; ψ(f(x∗
j )))

(
rj∏

h=1

τ(qjh; f(x∗
j ))

)
,
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where x∗
1, . . . , x

∗
k ∈ X are the k distinct values assumed by X-valued coordi-

nates belonging to the same group. Again, this measure can be decomposed
into the product of a constant exponential term, the r-fold product of H
with itself, and k independent measures on X, each absolutely continuous
with respect to the diffuse probability measure P0.

The rest of this section is devoted to the analysis of the likelihood func-
tions associated to normalized random measures and random mixture haz-
ards, assuming partially exchangeable models with a hierarchical prior spec-
ification. In particular, the introduction of latent variables specific to each
model, together with suitable analytical manipulations, recovers the core
structure introduced in (15), which in turn allows one to compute marginal
distributions explicitly via the recursive application of (14).

Normalized random measures Consider the array of D partially exchan-
geable samples

Xd = (Xd1, . . . , XdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

p̃ = (p̃1, . . . , p̃D) | p̃0
i.i.d.∼ NCRM(ν̃),

p̃0 ∼ NCRM(ν0),

(17)

for integers N1, . . . , ND ≥ 1 and hierarchical prior (9). Introducing the corre-
sponding latent variables, which represent the tables in the restaurant fran-
chise metaphor, the likelihood function associated to the augmented sample
(Xd,Zd) is

L(μ̃d;Xd,Zd)=
Nd∏

i=1

p̃d(dZdi, dXdi)= μ̃d(T,X)−Nd

k∏

j=1

rdj∏

h=1

μ̃d(dZ∗
djh, dX∗

j )qdjh .

By using a simple analytical manipulation based on the density of a gamma
random variable, this can be rewritten as

L(μ̃d;Xd,Zd) =
1

Γ (Nd)

∫

R+

uNd−1
d exp

{
−

∫

T×X

ud μ̃d(dz, dx)
}

dud

×
k∏

j=1

rdj∏

h=1

μ̃d(dZ∗
djh, dX∗

j )qdjh ,

where ud is an additional latent variable, thanks to which the core structure
in (15) is successfully recovered in the likelihood. Therefore, the result in
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(14) can be applied to marginalize the expression with respect to the lower
level of the hierarchical prior, i.e. conditionally on p̃0, obtaining

P(Xd,Zd | p̃0) =
1

Γ (Nd)

∫

R+

uNd−1
d e−ψ(ud)

k∏

j=1

rdj∏

h=1

τ(qdjh; ud) dud

×
k∏

j=1

p̃0(dX∗
j )rdj

rdj∏

h=1

H(dZ∗
djh).

Note that only the random partition induced by ties in the sequence Zd,
which is encoded into groups multiplicities (qdjh)jh, is relevant in the expres-
sion above, while their specific values are sampled independently from the
measure H. Since these values are not even observed in the model, they
can be safely ignored, and Zπ

d can be written instead of Zd to indicate that
results depend on the partition induced by latent variables, rather than on
their values.

The same analytical manipulation can be performed recursively for the
random probability measure p̃0, considering the likelihood associated to the
D partially exchangeable samples. The joint marginal distribution of the
observations X and the latent variables Z can be effectively expressed in
terms of the random partitions they induce, respectively denoted by Xπ and
Zπ, and of the vectors of their distinct values, denoted by X∗ and Z∗, as

P(Xπ,X∗,Zπ,Z∗) =

=
D∏

d=1

(
1

Γ (Nd)

∫

R+
uNd−1

d e−ψ(ud)

k∏

j=1

rdj∏

h=1

τ(qdjh;ud) dud ·
k∏

j=1

rdj∏

h=1

H(dZ∗
djh)

)

× 1
Γ (r)

∫

R+
ur−1
0 e−ψ0(u0)

k∏

j=1

τ0(rj ;u0) du0 ·
k∏

j=1

P0(dX∗
j ). (18)

In analogy with the comment above, the distinct values in X∗ do not enter
the partition function as well, and are sampled independently from the base
probability measure P0. Therefore, marginalizing out the contribution of
the distinct values (X∗,Z∗) in (18), one obtains the partially exchangeable
partition probability function (pEPPF):

P(Xπ,Zπ) =
D∏

d=1

1
Γ (Nd)

∫

R+

uNd−1
d e−ψ(ud)

k∏

j=1

rdj∏

h=1

τ(qdjh; ud) dud
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× 1
Γ (r)

∫

R+

ur−1
0 e−ψ0(u0)

k∏

j=1

τ0(rj ; u0) du0. (19)

This expression clearly highlights the way random partitions are composed at
the two levels of the hierarchy. At the level of single samples (i.e. restaurant
level), the partition function depends on the number of customers seated
at each table, that is on the partition induced by each sequence Zd. On
the other hand, at the root level (i.e. franchise level), the partition function
depends on the number of tables eating each dish, which describes how the
finer partition induced by latent variables Z is related to the coarser partition
induced by observations X.

According to the interpretation discussed in the previous section, the
joint marginal distribution in (18) represents a moment measure on the joint
space T

n × X
n, restricted to the linear subspace of dimension r × k which

reflects the partition structure induced by observations and latent variables
and encoded into elements (qdjh)djh. Specifically, this restricted measure is
absolutely continuous with respect to the product measure Hr × P k

0 , and
has constant Radon-Nikodym derivative expressed by the pEPPF in (19).

The structure of the pEPPF represents the cornerstone of computational
developments: indeed, full conditional distributions derived from it can be
exploited to devise marginal Gibbs sampling schemes, as extensively dis-
cussed in Camerlenghi et al. (2019b) (Section 6.1).

Random mixture hazards Consider the array of D partially exchangeable
samples

Td = (Td1, . . . , TdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

µ̃ = (μ̃1, . . . , μ̃D) | μ̃0
i.i.d.∼ CRM(ν̃),

μ̃0 ∼ CRM(ν0),

(20)

for integers N1, . . . , ND ≥ 1 and hierarchical prior (10). The random proba-
bility measure p̃d is recovered from the expression of the random hazard rate
in (6) and is expressed in terms of the random measures μ̃d as

p̃d(dt) =
∫

X

k(t; x) μ̃d(dx) exp
{

−
∫ t

0

∫

X

k(s; x) μ̃d(dx) ds

}
dt.

The further level of complexity represented by the kernel mixture requires
the introduction of additional latent variables, namely the ones representing
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the latent samples from the random measures, i.e. the dishes in the restau-
rant franchise metaphor, which instead are directly observed in the previ-
ously discussed case of normalized random measures. The augmented ran-
dom probability measure takes the more tractable form

p̃d(dt, dx) = k(t; x)μ̃d(dx) exp
{

−
∫ t

0

∫

X

k(s; y) μ̃d(dy) ds

}
dt.

Introducing the latent variables representing the tables in the restaurant
franchise metaphor, the likelihood function associated to the augmented
sample (Td,Xd,Zd) is

L(μ̃d; Td,Xd,Zd) =

=
Nd∏

i=1

k(Tdi;Xdi) μ̃d(dZdi, dXdi) exp

{
−

∫ Tdi

0

∫

T ×X

k(s;x) μ̃d(dz, dx) ds

}
dTdi

= Q(Td,Xd) exp
{

−
∫

T ×X

Kd(x) μ̃d(dz, dx)
} k∏

j=1

rdj∏

h=1

μ̃d(dZ∗
djh, dX∗

j )qdjh ,

where, in order to ease the notation, the following quantities have been
defined:

Q(Td,Xd) =
Nd∏

i=1

k(Tdi; Xdi) dTdi, Kd(x) =
Nd∑

i=1

∫ Tdi

0
k(s; x) ds.

Again, the structure in (15) is recovered in the likelihood, with the con-
stant term ud for normalized random measures replaced by the function Kd.
Therefore, the result in (14) can be applied recursively at the lower and root
levels of the hierarchical prior, so that the joint marginal distribution of both
the observations T and the latent variables X and Z becomes

P(T,Xπ,X∗,Zπ,Z∗) = Q(T,X) exp

{
−

∫

X

ψ0

(
D∑

d=1

ψ(Kd(x))

)
P0(dx)

}

×
D∏

d=1

k∏

j=1

rdj∏

h=1

τ(qdjh; Kd(X∗
j ))H(dZ∗

djh)

×
k∏

j=1

τ0

(
rj ;

D∑

d=1

ψ(Kd(X∗
j ))

)
P0(dX∗

j ). (21)

S273



Catalano et al.

The similarities with the joint distribution derived in (18) are apparent,
as the composition of random partitions at the two levels of the hierar-
chy follows the same structure. An important difference is represented by
the dependence of the partition function from the specific distinct values
X∗ through the functions K1, . . . , KD, so that their contribution cannot be
marginalized out, and a proper pEPPF cannot be defined. This dependence
on the specific values is reflected by a non-constant Radon-Nikodym deriva-
tive, when (21) is regarded as a moment measure.

The lack of a proper pEPPF also represents a computational drawback
in this context, as the Gibbs resampling step for the latent distinct values
X∗ involves both the kernel term Q(T,X) and the value of the partition
function. On the other hand, analytical tractability greatly benefits from
the absence of the integrals with respect to u1, . . . , uD and u0 appearing in
the expression (19) for normalized random measures, which are merely a
byproduct of analytical manipulations and need to be treated as additional
latent variables.

6 Posterior Characterizations

Another essential result which leverages on the random partition structure
is the posterior characterization of the random measures μ̃1, . . . , μ̃D and μ̃0.
Specifically, posterior distributions of CRMs are recovered via the determina-
tion of their conditional Laplace functional transforms: in these expressions,
one identifies the distributions of jumps at fixed locations and the Lévy inten-
sities of CRMs without fixed jump points. A structural conjugacy property
is shown to hold, that is, a posteriori, the vector of random measures µ̃
retains its hierarchical form, with random measures at the lower level of the
hierarchy being conditionally independent given the random measure at the
root.

In the following, posterior updates of hierarchical CRMs priors are explic-
itly described for the partially exchangeable models based on both normal-
ized random measures and random mixture hazards. For convenience, the
intensities of the jump components ρ and ρ0 at both levels of the hierarchy
are assumed to be absolutely continuous with respect to the Lebesgue mea-
sure on R

+, and suitably written as ρ(ds) = ρ(s) ds and ρ0(ds) = ρ0(s) ds,
respectively. Moreover, the results in this section consider the original defini-
tions of random measures at the lower level of the hierarchies, as introduced
in (9) and (10): the adaptation to their extended versions is straightforward.
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Normalized random measures Consider the partially exchangeable
model described in (17). The posterior distributions of the non-normalized
random measures μ̃1, . . . , μ̃D and μ̃0 are characterized conditionally on the
observations X, the latent variables Z, and the additional latent variables
U1, . . . , UD and U0. As already mentioned, such latent variables are a byprod-
uct of analytical manipulations in the likelihood, and are needed to recover
a (conditional) structural conjugacy.

Let U1, . . . , UD and U0 be conditionally independent positive random
variables with density functions

fd(u |Xπ
d ,Zπ

d ) ∝ uNd−1 e−ψ(u)
k∏

j=1

rdj∏

h=1

τ(qdjh; u), d = 1, . . . , D,

f0(u |Xπ,Zπ) ∝ ur−1 e−ψ0(u)
k∏

j=1

τ0(rj ; u),

where we recall that Xπ and Zπ denote the random partitions induced by
ties in the sequences X and Z, respectively, which are encoded into groups
multiplicities rj ’s (coarser partition) and qdjh’s (finer partition). At the lower
level of the hierarchy, the posterior distribution of each random measure μ̃d,
given the observations Xd, the latent variables Zd and Ud, and the root
random measure μ̃0 is

μ̃d(dx) | Xπ
d ,X∗

d,Z
π
d , Ud, μ̃0 ∼ μ̃∗

d(dx) +
k∑

j=1

rdj∑

h=1

Jdjh δX∗
j
(dx),

where the random elements in the sum are independent, μ̃∗
d ∼ CRM(ν∗

d) with
homogeneous Lévy intensity measure

ν∗
d(ds, dx) = e−Ud s ν(ds, dx) = e−Ud s ρ(ds) p̃0(dx),

and each Jdjh is a non-negative random variable with density function

fdjh(s) ∝ sqdjh e−Ud s ρ(s), j = 1, . . . , k, h = 1, . . . , rdj .

Therefore, a posteriori and conditionally on μ̃0, each random measure μ̃d

is still a CRM, resulting from the sum of random jumps at fixed points of
discontinuity and a CRM without fixed points of discontinuity. The latter is
characterized by the Lévy intensity measure of the prior with an exponential
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updating term, while the fixed points of discontinuity correspond to the dis-
tinct values of the observations. Moreover, the random measures μ̃1, . . . , μ̃d

preserve their conditional independence, given μ̃0.
Similarly, the posterior distribution of the random measure μ̃0 at the

root of the hierarchy, given the observations X and the latent variables Z
and U0, is

μ̃0(dx) | Xπ,X∗,Zπ, U0 ∼ μ̃∗
0(dx) +

k∑

j=1

Ij δX∗
j
(dx),

where the random elements in the sum are independent, μ̃∗
0 ∼ CRM(ν∗

0) with
homogeneous Lévy intensity measure

ν∗
0(ds, dx) = e−U0 s ν0(ds, dx) = e−U0 s ρ0(ds)P0(dx),

and each Ij is a non-negative random variable with density function

fj(s) ∝ srj e−U0 s ρ0(s), j = 1, . . . , k.

Again, the random measure μ̃0 is still a CRM a posteriori, given by the
sum of random jumps at fixed points of discontinuity, corresponding to the
distinct observed values, and an exponentially updated CRM without fixed
points of discontinuity.

An interesting feature of this result is that the prior-posterior updating
mechanism preserves the homogeneity of the random measures. Indeed, the
density functions of additional latent variables U1, . . . , UD and U0, the expo-
nential update of the Lévy intensity and the distributions of random jumps
at the fixed points of discontinuity depend only on the partition structure
induced by the observations and the latent variables, encoded into Xπ and
Zπ, while observed distinct values X∗ only determine the fixed locations of
discontinuity points. This property clearly parallels the factorization prop-
erty of the marginal distribution into pEPPF and independent sampling of
distinct values, and it represents a fundamental computational advantage
when one needs to sample directly from the posterior distribution of hierar-
chical CRMs.

Random mixture hazards Consider the partially exchangeable model
described in (20). In this case, the posterior distributions of random mea-
sures μ̃1, . . . , μ̃D and μ̃0 are characterized conditionally on the observations
T and the latent variables X and Z, featuring a proper structural conjugacy.
Specifically, the posterior distribution of each random measure μ̃d, given the

S276



A unified approach to hierarchical random measures

observations Td, the latent variables Xd and Zd, and the root measure μ̃0 is

μ̃d(dx) | Td,Xπ
d ,X∗

d,Z
π
d , μ̃0 ∼ μ̃∗

d(dx) +
k∑

j=1

rdj∑

h=1

Jdjh δX∗
j
(dx),

where the random elements in the sum are mutually independent, μ̃∗
d ∼

CRM(ν∗
d) with non-homogeneous Lévy intensity measure

ν∗
d(ds, dx) = e−Kd(x) s ρ(ds) μ̃0(dx),

and each Jdjh is a non-negative random variable with density function

fdjh(s) ∝ sqdjh e−Kd(X∗
j ) s ρ(s), j = 1, . . . , k, h = 1, . . . , rdj .

Similarly, the posterior distribution of the random measure μ̃0 at the root of
the hierarchy, given the observations T and the latent variables X and Z, is

μ̃0(dx) | T,Xπ,X∗,Zπ ∼ μ̃∗
0(dx) +

k∑

j=1

Ij δX∗
j
(dx),

where the random elements in the sum are mutually independent, μ̃∗
0 ∼

CRM(ν∗
0) with non-homogeneous Lévy intensity measure

ν∗
0(ds, dx) = exp

{
−

D∑

d=1

ψ(Kd(x)) s

}
ρ0(ds)P0(dx),

and each Ij is a non-negative random variable with density function

fj(s) ∝ srj exp

{
−

D∑

d=1

ψ(Kd(X∗
j )) s

}
ρ0(s), j = 1, . . . , k.

As already highlighted for marginal distributions, the structural analogies
with the posterior characterization for normalized random measures are
apparent, and similar considerations apply. In particular, here the role of
the random variables U1, . . . , UD is played by the non-random functions
K1, . . . , KD, which summarize the contribution of the observations T to
the posterior update.

S277



Catalano et al.

However, the analytical and computational advantage represented by the
absence of additional latent variables is partially overturned by the non-
homogeneity of the Lévy intensity measures characterizing, a posteriori, the
continuous part of the hierarchical CRMs. The challenges represented by
non-homogeneous CRMs in conditional sampling algorithms are discussed
in Camerlenghi et al. (2021) (Section 6.2), where a novel general-purpose
approach is proposed.

7 Generalized Gamma CRMs as Natural Conjugate Priors

The practical implementation of Bayesian procedures involving hierarchi-
cal CRMs priors requires the specification of their Lévy intensity measures.
In particular, a fundamental role is played by measures ρ and ρ0, which
characterize the jump components and deeply affect the induced partition
structure. Indeed, such measures directly impact the distributions of random
jumps at fixed points of discontinuity in the posterior characterizations of
hierarchical CRMs, and also enter the definition of key quantities in (12),
which constitute the core structure of the marginal distributions (18) and
(21). The availability of closed-form and tractable expressions represents a
computational advantage for both marginal and conditional algorithms. On
the contrary, the specification of P0 has a far lower impact from both ana-
lytical and computational points of view.

A natural choice of ρ and ρ0 for hierarchical constructions is represented
by the generalized gamma hierarchical CRM, corresponding to the specifi-
cations

ρ(ds) =
1

Γ (1 − σ)
s−σ−1 e−βs ds, ρ0(ds) =

1
Γ (1 − σ0)

s−σ0−1 e−β0s ds,

with parameters β, β0 ∈ R
+ and σ, σ0 ∈ [0, 1). Notable special cases are

obtained setting σ = σ0 = 0, which corresponds to the gamma hierarchical
CRM, and β = β0 = 0, characterizing the σ–stable hierarchical CRM.

The generalized gamma hierarchical CRM allows for the explicit compu-
tation of the integrals defining the Laplace exponent and its cumulants in
(12), namely,

ψ(u) =
∫

R+

(1 − e−us) ρ(ds) =
(β + u)σ − βσ

σ

σ=0= log
(

1 +
u

β

)
,

τ(m; u) =
∫

R+

sm e−us ρ(ds) =
Γ (m − σ)
Γ (1 − σ)

(β + u)−m+σ .
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These quantities can be directly substituted into the expressions of the
marginal distributions, from which full conditional distributions and pre-
dictive urn schemes are easily derived.

Moreover, the generalized gamma choice acts as the (conditionally) con-
jugate prior with respect to the posterior characterization of hierarchical
CRMs for the partially exchangeable models discussed in this work. For
example, considering the model in (17) based on normalized random mea-
sures, the posterior distribution of each random measure μ̃d at the lower
level of the hierarchy consists of the sum of random jumps at fixed points of
discontinuity having gamma distribution, namely,

Jdjh ∼ Gamma(qdjh − σ, β + Ud),

and a CRM without fixed points of discontinuity, which still has the Lévy
intensity measure of a generalized gamma CRM, with the exponential term
resulting in the parameter update β �→ β+Ud. The same structure is observed
for the root measure μ̃0, and for the model in (20) based on random mix-
ture hazards, with the usual roles swap of the variables U1, . . . , UD and the
functions K1, . . . , KD, converting real parameters β and β0 into functional
parameters and making the Lévy intensity non-homogeneous.

8 Eliciting the Induced Dependence Structure

In the previous sections, we have described two different hierarchical models
that provide an intuitive and effective way to introduce dependence among
the components of a vector of random measures. The amount of dependence
regulates the borrowing of information across groups, that is, how much
inference and prediction for each group are influenced by the observations in
other groups. In an ideal setting where infinite observations for each group
are available, one would not need to leverage on the information contained
in the other groups of observations, and the borrowing of information would
be useless (if not harmful). However, in real situations with only few obser-
vations per group available or strongly unbalanced datasets, the borrowing
of information can lead to crucial improvements in the estimates and mean-
ingful reduction of their uncertainty.

Let µ̃ = (μ̃1, . . . , μ̃D) be a vector of random measures. Two extreme
situations can be identified: (i) when the random measures are equal almost
surely, i.e., μ̃1 = · · · = μ̃D a.s., there is maximal dependence and, since
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all observations are treated as belonging to the same group, full borrowing
of information; (ii) when the random measures are mutually independent,
there is no borrowing of information, since the inference for each group is
not affected by the observations in other groups. In the elicitation of the
prior, it is crucial to understand how much dependence is introduced in the
model, as this has major consequences on the learning mechanism. In this
respect, it is sufficient to remark that if (i) is assumed a priori, the estimates
for each group are exactly the same, without taking into account possible
differences across the groups, while if (ii) is imposed a priori, the estimate
for each group does not take into account the observations in other groups,
with potential loss of information.

One of the most natural summaries of the dependence structure between
two random measures μ̃i and μ̃j is their pairwise covariance structure
Cov(μ̃i(A), μ̃j(A)), for any set A ∈ X , and its normalized version, the pair-
wise correlation Corr(μ̃i(A), μ̃j(A)). See Catalano et al. (2023, 2021) for
alternative approaches based on the Wasserstein distance. Note that, when
the pairwise correlation is 1, it is sufficient to consider random measures
with the same marginal distribution to prove that the random variables
μ̃1(A), . . . , μ̃D(A) are equal almost surely. Moreover, even if a pairwise cor-
relation equal to 0 does not imply, in general, that the random variables
μ̃1(A), . . . , μ̃D(A) are mutually independent, it actually does for many spe-
cific models. Both these features hold for the hierarchical structures we have
considered in this work, namely,

µ̃(1) =
(
μ̃
(1)
1 , . . . , μ̃

(1)
D

) ∣∣ μ̃0
i.i.d.∼ CRM

(
ρ(ds)

μ̃0(dx)
μ̃0(X)

)
, (22)

µ̃(2) =
(
μ̃
(2)
1 , . . . , μ̃

(2)
D

) ∣∣ μ̃0
i.i.d.∼ CRM(ρ(ds) μ̃0(dx)), (23)

where μ̃0 is a CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx).
In the previous sections, we have applied normalization to the random mea-
sures in (22) and a hazard mixture transformation to the random measures
in (23). In this section, we rather focus on the comparison between the
dependence structures at the level of the random measures, irrespective of
the particular choice of transformation. Indeed, while it would be possible to
focus on the transformed random measures as well, we believe that a direct
comparison between (22) and (23) can help to disentangle the effect of the
hierarchical construction from the effects of the transformations.
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A decisive advantage of the pairwise covariance is represented by its
plain evaluation for hierarchical models through the law of total covariance
and Campbell’s theorem. In particular, considering the vector of random
measures µ̃(1) =

(
μ̃
(1)
1 , . . . , μ̃

(1)
D

)
in (22), for any fixed set A ∈ X and i �= j,

E

(
μ̃
(1)
i (A)

)
=

(∫
sρ(ds)

)
E

(
μ̃0(A)
μ̃0(X)

)
,

Var
(
μ̃
(1)
i (A)

)
= Cov

(
μ̃
(1)
i (A), μ̃(1)

j (A)
)

+
(∫

s2ρ(ds)
)
E

(
μ̃0(A)
μ̃0(X)

)
,

Cov
(
μ̃
(1)
i (A), μ̃(1)

j (A)
)

=
(∫

sρ(ds)
)2

Var
(

μ̃0(A)
μ̃0(X)

)
.

(24)
The corresponding expressions for the vector µ̃(2) =

(
μ̃
(2)
1 , . . . , μ̃

(2)
D

)
in (23)

are obtained by replacing the normalized random measure μ̃0(A)/μ̃0(X)
with its non-normalized counterpart μ̃0(A). At the root level of the hier-
archy, the mean and the variance of both the CRM μ̃0 and its normalization
μ̃0(·)/μ̃0(X) may be expressed in terms of their Lévy intensity measure ν0,
exploiting Campbell’s theorem and the techniques developed in James et al.
(2006). For illustration purposes, consider the hierarchical gamma process,
where μ̃

(h)
1 , . . . , μ̃

(h)
D , for h = 1, 2, and μ̃0 are gamma completely random

measures, obtained by choosing

ρ(ds) =
α e−s

s
ds, ρ0(ds) =

α0 e−s

s
ds.

This specification yields the following expressions for the quantities consid-
ered in (24), for both hierarchical structures in (22) (left column) and (23)
(right column):

E

(
μ̃
(1)
i (A)

)
=α P0(A),

Cov
(
μ̃
(1)
i (A), μ̃

(1)
j (A)

)
=

α2 P0(A)(1 − P0(A))

1+α0
,

Var
(
μ̃
(1)
i (A)

)
=

α2 P0(A)(1−P0(A))

1+α0
+αP0(A),

Corr
(
μ̃
(1)
i (A), μ̃

(1)
j (A)

)
=

α(1−P0(A))

α(1−P0(A))+1+α0
,

E

(
μ̃
(2)
i (A)

)
=αα0P0(A),

Cov
(
μ̃
(2)
i (A), μ̃

(2)
j (A)

)
=α2α0P0(A),

Var
(
μ̃
(2)
i (A)

)
=α(α+1) α0P0(A),

Corr
(
μ̃
(2)
i (A), μ̃

(2)
j (A)

)
=

α

1+α
.
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In order to correctly interpret the information contained in (24), let us elab-
orate on two different flexibility properties that are desirable for the depen-
dence structure of a model that induces positive association between the
random measures. The first kind of flexibility ensures that, for every value
γ ∈ [0, 1], there exists a specification of the model parameters such that the
random measures have correlation equal to (or converging to) γ. This prop-
erty holds for hierarchical models in general, and can be easily checked for
the hierarchical gamma process considered above: in both cases, the values
of α and, possibly, α0 can be chosen so that the correlations are equal to
(or converge to) every fixed value γ ∈ [0, 1]. The second, and stronger, kind
of flexibility asks that, for every marginal law of the random measures and
for every value γ ∈ [0, 1], there exists a specification of the model parame-
ters such that the random measures have correlation equal to (or converging
to) γ. This kind of flexibility ensures that the marginal law of the random
measures can be modeled separately from their dependence structure, a fea-
ture which is often desirable in practice, as they encode different aspects
of the model. For simplicity, it is usually sufficient to restrict to a weaker
version, whereby one fixes only the first and second moments of the random
measures, instead of fixing their whole marginal laws.

Interestingly, most hierarchical models currently used in the literature do
not achieve this second type of flexibility. For example, consider the vector of
random measures µ̃(2) with the hierarchical gamma specification described
above. As revealed by the expression of the correlation, in order to recover
perfectly correlated random measures, one needs α → +∞; however, in such
case, the expected value diverges. This suggests that a good practice for hier-
archical gamma random measures, when the root measure is not normalized,
is to fix α0 = 1/α, so that E

(
μ̃
(2)
i (A)

)
= P0(A) and thus the dependence

structure does not affect the mean of the random measure. Nevertheless,
with such choice of parameters, one obtains Var

(
μ̃
(2)
i (A)

)
= (α + 1)P0(A),

which in turn implies that the only way to recover perfectly correlated ran-
dom measures is to have (marginally) infinite variance. In conclusion, the
flexibility of second kind cannot be achieved for the hierarchical structure in
(23). On the other hand, such issues do not arise for the vector µ̃(1) described
above, and the ultimate reason of this can be understood by looking at the
expressions in (24): if μ̃0 is a gamma random measure, its mean and vari-
ance coincide, whereas the variance of the normalization μ̃0(·)/μ̃0(X) can be
adjusted separately from its expected value. This fact suggests to consider
other classes of random measure for μ̃0, where a hyper-parameter can be set
to flexibly account for different values of the variance.
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Summing up, when resorting to hierarchical constructions to model the
dependence between random measures, particular attention has to be put
in eliciting the dependence structure, as it will also affect the marginal dis-
tributions. For the same reason, the covariance is not a reliable measure of
dependence: since changing the covariance also affects the variance, the nor-
malization required in the expression of the correlation is not only a way
to obtain values in [0, 1], but also provides important information about the
dependence structure. In order to effectively showcase this last reasoning,

Figure 1: Samples from µ̃(2,β)(A) =
(
μ̃
(2,β)
1 (A), μ̃

(2,β)
2 (A)

)
, for β = 1 (top)

and β = 100 (bottom), where A is such that P0(A) = 0.5. The covariance is
the same for every value of β > 0, that is, Cov

(
μ̃
(2,β)
1 (A), μ̃

(2,β)
2 (A)

)
= 0.5

S283



Catalano et al.

consider the bivariate vector of hierarchical random measures

µ̃(2,β) =
(
μ̃
(2,β)
1 , μ̃

(2,β)
2

)
| μ̃0

i.i.d.∼ CRM
(

β e−βs

s
ds μ̃0(dx)

)
,

μ̃0 ∼ CRM
(

e−s

s
dsP0(dx)

)
,

where β > 0. Resorting to the expressions in (24), one can show that, for any
A ∈ X , the covariance Cov

(
μ̃
(2,β)
1 (A), μ̃(2,β)

2 (A)
)

= P0(A) remains unchanged
for every value of β; however, the dependence structure of µ̃(2,β) appears
substantially different for different values of β, as shown in Figure 1, in
the cases β = 1 and β = 100. This difference is correctly detected by the
correlation, which equals β/(1 + β) and thus converges to 1 as β diverges.
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