


Copyright © 2019 

PUBLISHED BY PEARSON 

WWW.PEARSON.COM 

Giugno 2019 ISBN 9788891915108



Bayesian Model Comparison based on
Wasserstein Distances
Confronto di Modelli Bayesiani tramite Distanze di
Wasserstein

Marta Catalano, Antonio Lijoi and Igor Prünster

Abstract Exchangeable processes are extensively used in Bayesian nonparametrics
to model exchangeable data. Most common approaches assign a law to the process
through the specification of a random measure. When two processes only differ
in the law of the random measure, a distance between random measures provides a
natural way to compare them. In this work we propose one by relying on the Wasser-
stein distance. Moreover, we overcome the analytical difficulties of evaluating the
distance by developing sharp upper and lower bounds. The specialization of these
bounds to Gamma random measures provides the exact value of the Wasserstein dis-
tance in terms of the Kolmogorov distance between the base measures. The results
are based on a forthcoming work in collaboration with A. Lijoi and I. Prünster.
Abstract I processi scambiabili sono usati di frequente per modellare dati scambi-
abili. Nella maggior parte dei casi la legge del processo richiede la specificazione
di una misura aleatoria. Quando due sequenze scambiabili differiscono solamente
nella distribuzione delle misure, la valutazione di una distanza tra misure aleatorie
fornisce un modo naturale di metterle a confronto. In questo lavoro ne proponiamo
una basata sulla distanza di Wasserstein. Inoltre, superiamo le difficoltà analitiche
tramite la derivazione di limiti superiori e inferiori. La specializzazione dei limiti
alle misure aleatorie Gamma fornisce il valore esatto della distanza di Wasserstein
in termini di distanza di Kolmogorov tra misure base. I contenuti si basano su un
lavoro di prossima pubblicazione in collaborazione con A. Lijoi e I. Prünster.
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1 Introduction

Consider a generic parametric class of models M = {Mθ |θ ∈Θ ⊂ Rk} assumed
to describe or approximate the distribution of n observations (x1, . . . ,xn). Many
Bayesian inferential procedures rely on a notion of discrepancy between models,
which is often translated into a distance between random variables. For example,
sensitivity to the prior is assessed through a comparison between the posterior dis-
tributions, which often amounts to the evaluation of a (pseudo–)distance; see [2] for
a review. Moreover, these are also used in model selection [10], variable selection
[7], and in general in Bayesian testing when the hypotheses are nested. In this con-
text many authors think that Bayes factors, corresponding to 0–1 losses, may be too
restrictive and prefer considering distance–based losses instead [3, 16, 17].

A consistent portion of the Bayesian literature now focuses on the specification
and properties of the so–called nonparametric priors, whose large support guaran-
tees reliable predictions and estimations. The analytical tractability of the Dirichlet
process [9] opened the way to the study of many nonparametric structures relying
on random measures. For example, random measures are often normalized so to
provide de Finetti measures [14, 15] or to define priors for density functions [1],
which are both used to specify the law of an exchangeable process. In survival ana-
ysis, moreover, they provide effective ways to specify the law of random hazard
functions [8] or cumulative hazards [6, 11]. In all these cases, the specification of
the law for a stochastic process of interest requires the distribution of a random
measure. Typical inferential procedures analyse how this distribution is affected by
the observed data. Nonparametric analogues of the previous procedures, such as
sensitivity assessement and hypothesis testing, could then be based on distances be-
tween random measures. Interestingly, to the best of our knowledge there has not
been any attempt to define such distances in the Bayesian nonparametric literature.
We here propose a way to fill in this gap by exploiting the Wasserstein distance.
While simulations of the Wasserstein distance are easily achieved [19], analytical
evaluations are generally difficult. This raises the need for analytically tractable and
sharp bounds. We achieve such bounds for a wide subclass of random measures, the
so–called completely random measures.

The outline of the work is the following. After a brief recapitulation of basic no-
tions about completely random measures and the Wasserstein distance, in Section 3
we provide general upper and lower bounds for the Wasserstein distance between
completely random measures. These are expressed in terms of the underlying Lévy
measures and are then specialized to Gamma completely random measures in Sec-
tion 4.
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2 Preliminaries

This section will be devoted to the definition of a distance between random mea-
sures. We first recall some useful properties of the Wasserstein distance and of com-
pletely random measures.

Let X be a Polish space with respect to a metric d, endowed with the Borel σ–
algebra B(X), and let X1 and X2 be X–valued random elements. The Wasserstein
distance of order p ∈ [1,+∞) between X1 and X2 is defined as

Wp,d (X1,X2) = inf
(Z1,Z2)∈C(X1,X2)

{
E(d(Z1,Z2)

p)
1
p
}
,

where C(X1,X2) indicates the Fréchet class of X1 and X2, i.e. the set of distributions
on the product space X2 whose marginal distributions on X coincide with the laws
of X1 and X2. In the rest of the paper we will focus on the case p = 1 and (X,d) =
(R, | · |), i.e. the real line with Euclidean distance, and we will denote such distance
W . It can be shown that

|E(X)−E(Y )| ≤W (X ,Y )≤ E(|X |)+E(|Y |). (1)

In particular, the Wasserstein distance is finite when the random variables have finite
mean.

Consider the space M(R) of boundedly finite measures on R endowed with the
weak] topology [5], and denote by M (R) the corresponding Borel σ -algebra. A ran-
dom measure is a random element on the Borel space (M(R),M (R)). We identify
each random measure µ̃ with its corresponding cumulative process {µ̃((−∞,x])}x∈R
and propose the following distance between random measures.

Definition 1. Given two random measures µ̃1 and µ̃2 on R we define

dW (µ̃1, µ̃2) = sup
x∈R

W (µ̃1((−∞,x]), µ̃2((−∞,x])),

where W is the Wasserstein distance. It is easily shown that dW is a distance on the
laws of random measures and we refer to it as the Wasserstein distance between
random measures. The distance dW is finite whenever E(µ̃i(R))<+∞, for i = 1,2.

The rest of the work concerns the evaluation of this distance on the so–called
completely random measures. A random element µ̃ taking values in (M(R),M (R))
is a completely random measure (CRM) if, given a finite collection of pairwise dis-
joint bounded sets {A1, · · · ,An} in B(R), the random variables {µ̃(A1), · · · , µ̃(An)}
are mutually independent [12]. Every CRM µ̃ can be decomposed as the sum of
three independent components, µ̃

d
= µ + µ̃ f + µ̃c, where µ is a deterministic mea-

sure, µ̃ f is a random measure with fixed atoms and µ̃c is a random measure without
fixed atoms. Let R+ = (0,+∞). In particular, for every CRM without fixed atoms
there exists a diffuse boundedly finite measure ν on R+×R such that



4 Marta Catalano, Antonio Lijoi and Igor Prünster

µ̃c(dy) d
=
∫ +∞

0
sN (ds,dy),

where N is a Poisson random measure with intensity ν . This means that N is a
CRM on R+×R and, for any B ∈ B(R+)⊗B(R) such that ν(B) < ∞, N (B)
is a Poisson random variable with mean ν(B). The corresponding cumulative pro-
cess {µ̃c((−∞,x])}x∈R is an increasing additive process on R with Lévy measures
νx(ds) =

∫
(−∞,x] ν(ds,dy) satisfying

∫ 1

0
s∧1νx(ds)<+∞ ∀x ∈ R.

In applications to Bayesian frameworks one is usually interested in CRMs that are
infinitely active, i.e. such that νx((0,1]) = +∞ ∀x ∈ R. Moreover, we point out that
µ̃c has finite mean if and only if supx

∫ +∞

0 sνx(ds)<+∞.

3 Wasserstein Bounds for Completely Random Measures

The Wasserstein distance can be easily simulated [19] but it is generally difficult to
evaluate analytically. Nonetheless this is an important task since it can be used to
quantify, for example, the sensitivity of the model to the prior specification of CRM.
Our purpose for this section is to provide a general framework to derive upper and
lower bounds for the Wasserstein distance between completely random measures in
terms of their corresponding Lévy measure.

We focus on CRMs without fixed atoms, though our results can be extended in
a natural way to CRMs with atoms. If µ̃ is infinitely active, its Lévy measure ν is
diffuse and not finite. Thus, for i = 1,2 and r > 0 there exists εi,r > 0 such that

νi,x([εi,r,+∞)) = r.

We further define the probability measure ρi,r,x to be proportional to the restriction
of νi,x on the interval [εi,r,+∞), i.e.

ρi,r,x(ds) =
νi,x(ds)

r
1[εi,r ,+∞)(s),

which can be shown to be the distribution of the jumps of the compound poisson
approximation of µi((−∞,x]); see [18].

Theorem 1. Let µ̃1 and µ̃2 be infinitely active CRMs with finite mean. Then for
every x ∈ R∣∣∣∫ +∞

0
s(ν1,x−ν2,x)(ds)

∣∣∣≤W (µ̃1((−∞,x]), µ̃2((−∞,x]))≤ lim
r→+∞

rW (ρ1,r,x,ρ2,r,x).

Moreover, the limit on the right hand side is finite.
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The lower bound is an immediate consequence of (1). As for the right hand side,
it can be seen as a generalization of [13], where the authors provide upper bounds
on the Wasserstein distance between Lévy processes; see [4] for a proof.

4 Gamma Completely Random Measures

In this section we apply Theorem 1 to evaluate the exact expression of the Wasser-
stein distance between Gamma completely random measures. We recall that a
Gamma CRM µ̃ of parameter b > 0 and base measure α has Lévy intensity

ν(ds,dy) =
e−sb

s
1(0,+∞)(s)dsα(dy).

We use the notation µ̃ ∼ Ga(b,α). The random measure µ̃ is easily shown to be
infinitely active and, if α is a finite measure on R, it has a finite mean. Moreover,
we set x 7→ A(x) = α((−∞,x]).

Theorem 2. Let µ̃i ∼ Ga(bi,αi), where 0 < b1 < b2 and αi is a finite measure on R
for i = 1,2. Then,

1. If α1 = α2 = α ,

W (µ̃1((−∞,x]), µ̃2((−∞,x])) = A(x)
∣∣∣∣ 1
b1
− 1

b2

∣∣∣∣;
2. If b1 = b2 = b,

W (µ̃1((−∞,x]), µ̃2((−∞,x])) =
1
b
|A1(x)−A2(x)|.

Remark 1. Theorem 2 clarifies the sharpness of the bounds derived in Theorem 1.
Indeed, in this case the upper and lower bound coincide and can thus be used to
derive the exact value of the Wasserstein distance.

Remark 2. Theorem 2 provides an immediate evaluation of the distance between
completely random measures defined in Definition 1. By taking the supremum over
x ∈ R, one derives

1. If α1 = α2 = α ,

dW (µ̃1, µ̃2) = α(R)
∣∣∣∣ 1
b1
− 1

b2

∣∣∣∣;
2. If b1 = b2 = b,

dW (µ̃1, µ̃2) =
1
b

K(α1,α2),

where K(α1,α2) indicates the Kolmogorov distance between two finite measures,
namely
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K(α1,α2) = sup
x
|A1(x)−A2(x)|.

Intuitively, one expects that CRMs with similar parameters are close to each other.
Our results confirm the intuition and allow for a precise quantification of the close-
ness in terms of Wasserstein distance.
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