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The proposal and study of dependent Bayesian nonparametric models
has been one of the most active research lines in the last two decades, with
random vectors of measures representing a natural and popular tool to define
them. Nonetheless, a principled approach to understand and quantify the as-
sociated dependence structure is still missing. We devise a general, and not
model-specific, framework to achieve this task for random measure based
models, which consists in: (a) quantify dependence of a random vector of
probabilities in terms of closeness to exchangeability, which corresponds to
the maximally dependent coupling with the same marginal distributions, that
is, the comonotonic vector; (b) recast the problem in terms of the underlying
random measures (in the same Fréchet class) and quantify the closeness to
comonotonicity; (c) define a distance based on the Wasserstein metric, which
is ideally suited for spaces of measures, to measure the dependence in a prin-
cipled way. Several results, which represent the very first in the area, are
obtained. In particular, useful bounds in terms of the underlying Lévy inten-
sities are derived relying on compound Poisson approximations. These are
then specialized to popular models in the Bayesian literature leading to inter-
esting insights.

1. Introduction. A sequence of random elements (Xn)n≥1 is exchangeable when its dis-
tribution is invariant with respect to finite permutations of the indices. By de Finetti’s repre-
sentation theorem, this intuitive symmetry requirement is equivalent to the finite-dimensional
distributions being conditionally independent and identically distributed. When the random
elements are grouped in a finite number of blocks, partial exchangeability [10] is a natural
generalization that amounts to assuming the invariance of their joint distribution with respect
to finite permutations within each block. The corresponding representation theorem states
that for partially exchangeable sequences {X1,j | j ≥ 1}, . . . , {Xk,j | j ≥ 1} on a Polish space
X there exists a random vector of probability measures (p̃1, . . . , p̃k) ∼ Q s.t. for any ni ∈ N

and any Borel sets Ai ⊂X
ni , for i = 1, . . . , k,

P

(
k⋂

i=1

{
(Xi,1, . . . ,Xi,ni

) ∈ Ai

}) =
∫
P k
X

k∏
i=1

p
(ni)
i (Ai)Q(dp1, . . . , dpk).

In particular, exchangeability is recovered when p̃1 = · · · = p̃k almost surely (a.s.).
In Bayesian nonparametric inference, the random elements {X1,j | j ≥ 1}, . . . , {Xk,j | j ≥

1} are regarded as observables and a fundamental issue is the choice of the distribution Q

for the random vector of probability measures (p̃1, . . . , p̃k), the prior distribution. The de-
pendence between the random probabilities is of crucial importance, since it regulates the
dependence between groups of observations and, consequently, the borrowing of information
across groups. The first proposal of a dependent nonparametric prior dates back to Cifarelli
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and Regazzini [5], but it was the two seminal papers of MacEachern [35, 36] that led to an
impressive growth of research in this direction. Most classes of priors are defined to select
a.s. discrete p̃i’s, since this naturally allows for clustering at either the observations or latent
level. This is true also in the exchangeable case: most notable a.s. discrete p̃ are obtained
through either the stick-breaking construction [21, 49] or a suitable transformation of a com-
pletely random measure (CRM) μ̃ [26, 33]. The former approach is particularly effective
for computational purposes, whereas the latter allows us to derive important distributional
properties. In particular, by using CRMs as a unifying concept, as showcased in [33], one
obtains popular classes of nonparametric priors such as, for example, normalized random
measures [45], neutral-to-the-right processes [11] and kernel mixtures of random measures
[12, 23]. Correspondingly, in the general partially exchangeable case, one may distinguish
two approaches for building dependent priors: the first approach models the dependence at
the level of the atoms and/or the jumps of the stick-breaking construction of each p̃i ; the sec-
ond models the dependence at the level of the CRMs (μ̃1, . . . , μ̃k) to then obtain a dependent
vector (p̃1, . . . , p̃k) via a suitable transformation. See [15, 20, 38, 39] for extensive accounts.
A crucial gap in this vast literature is the understanding and quantification of the dependence
structure of a dependent nonparametric prior in order to both elicit prior parameters to achieve
the desired degree of dependence and compare different priors themselves. The most natural
way to approach the problem is to measure closeness to exchangeability, which corresponds
to the extreme case of maximal dependence between populations. Within a parametric frame-
work, already in 1938, de Finetti proposed to use approximately exchangeable priors to deal
with contingency tables [10]. Recently, Bacallado, Diaconis and Holmes [1] enriched this
class of examples and proposed ways to use them to test for the exchangeability assumption.
However, closeness to exchangeability is left as an essentially intuitive notion. To the best of
our knowledge, the only measure of dependence that has been used so far is the pairwise lin-
ear correlation of (p̃i(A), p̃j (A)), for any given set A, which is certainly useful but reducing
dependencies between random probabilities to linear correlation is hardly satisfying.

Here, we tackle the problem in a general nonparametric framework adopting a principled
approach in that we measure the distance to exchangeability in terms of the Wasserstein dis-
tance. Because of its intrinsically geometric definition, the Wasserstein distance is the most
appropriate choice for describing the similarity between distributions. As explained in [44],
this distance was first introduced by Gini [16] with this exact scope. During the past century,
the Wasserstein distance was introduced and studied in many fields of research, including
optimal transport theory, partial differential equations and ergodic theory. Recently, it has
gained a renewed popularity in probability, statistics and the related fields of machine learn-
ing and optimization, where the distinguished theoretical properties are now supported by
efficient algorithms [7]. See [42, 51] for detailed reviews. The first to use the Wasserstein
distance in a Bayesian nonparametric framework, for asymptotic investigations, has been
Nguyen [40] who has convincingly argued for it as an effective tool to handle discrete non-
parametric priors. See also [41]. From our perspective, the Wasserstein distance is the ideal
choice because it allows for a meaningful comparison between distributions with different
support and without density, as the ones arising from transformations of CRMs. This prop-
erty is not shared by the most common distances and divergences, such as the total variation
distance, the Hellinger distance or the Kullback–Leibler divergence.

Our general setup is as follows. For simplicity, we consider the case k = 2, even though
most of our results may be extended to a generic k with no additional cost. Since our lead-
ing purpose is to measure the closeness to exchangeability (i.e., p̃1 = p̃2 a.s), we consider

random vectors (p̃1, p̃2) with equal marginal distributions (p̃1
d= p̃2, where d= stands for

equality in distribution). A crucial observation is then the following: instead of measuring
the distance from exchangeability of (p̃1, p̃2), we work with completely random vectors
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(CRVs) (μ̃1, μ̃2), characterized by jointly independent increments, and measure their close-
ness to the comonotonic case, that is, μ̃1 = μ̃2 a.s. In fact, since most random vectors of
discrete probabilities (p̃1, p̃2) are obtained by a suitable componentwise transformation T of
a CRV, (T (μ̃1), T (μ̃2)) (see [33] for details), comonotonic CRVs correspond to exchange-
ability. Working directly with the random measures rather than their transformed versions has
two distinct advantages: (a) it provides a general and not model-specific framework for the
analysis of dependence, which can then be tailored to the particular class of models one is
interested in, as we do in Section 7; (b) it significantly simplifies the mathematical analysis.
Closeness to the comonotonic case is then measured through the following distance on CRVs,
which will be shown in Section 2 to be well defined,

(1) dW

((
μ̃1
μ̃2

)
,

(
ξ̃1

ξ̃2

))
= sup

A∈X
W

((
μ̃1(A)

μ̃2(A)

)
,

(
ξ̃1(A)

ξ̃2(A)

))
,

where W denotes the 2-Wasserstein distance on the Euclidean plane. The goal of this work
is then to provide an analytical expression for the distance dW in (1) with a particular fo-
cus on the distance between a CRV (μ̃1, μ̃2) and the comonotonic random vector (ξ̃1, ξ̃2)

in the same Fréchet class, that is, with the same marginal distributions. We stress that our
results, even though motivated by Bayesian nonparametric models, are of independent prob-
abilistic interest with reference to the theory of multidimensional random measures and Lévy
processes.

The two major challenges in the treatment of dW in (1) may be summarized as follows.
(i) The analytical computation of the Wasserstein distance needs the appointment of an opti-
mal transport map. While this is always known in explicit form for univariate distributions,
the general expression for multidimensional ones is still an open problem, with only a few
known cases. Crucially, in Theorem 2 we are able to determine the optimal transport map to
the comonotonic vector for any CRV (μ̃1, μ̃2). This allows us to express the Wasserstein dis-
tance as an integral that involves the cumulative distribution function (cdf) of μ̃1(A)+ μ̃2(A),
which in some cases may be computed directly, an example being when one considers the
Wasserstein distance between comonotonicity and independence. (ii) The law of a CRV is
usually characterized through a bivariate Lévy measure, so that the cdf of μ̃1(A) + μ̃2(A)

is not available in closed form. Hence, Theorem 5 is of particular importance, since we are
able to find tight bounds of the distance that are expressed in terms of the Lévy measures.
This is achieved through suitable compound Poisson approximations of the random vectors
and by finding a new informative bound for the Wassserstein distance between multivariate
compound Poisson distributions (Proposition 6). With the aim of emphasizing their role in
Bayesian nonparametric inference, we then compute the bounds for dW for laws of (μ̃1, μ̃2)

that correspond to well-known priors with partially exchangeable data, leading to meaningful
insights and a quantification of their dependence structure in terms of the hyperparameters.

Our measure of dependence may be naturally extended to k > 2 groups by considering the
Wasserstein distance on R

k from (μ̃1(A), . . . , μ̃k(A)) such that μ̃1(A) = · · · = μ̃k(A) a.s.,
that is, the comonotonic k-dimensional CRV corresponding to exchangeability. The main
techniques still apply to the k-dimensional case. We underline that the natural extension to
an arbitrary k represents a further benefit of our measure of dependence compared to linear
correlation, since it provides an overall quantification of dependence without forcing pairwise
comparisons.

The techniques that we introduce may also be used to measure the dependence directly on
componentwise transformations (T (μ̃1), T (μ̃2)) of a CRV, which may be seen as a comple-
mentary model-specific analysis. However, this requires additional work and depends on the
choice of T , since the Wasserstein distance in not transformation invariant. Here, we develop
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informative bounds for a specific transformation that is widely used in Bayesian nonparamet-
ric inference for time-to-event data, namely random hazards modeled as kernel mixtures over
a CRM. Since the hazards characterize the associated probability distribution, this provides
a specification for the de Finetti measure. The inferential properties of this class of nonpara-
metric priors were thoroughly studied in [12, 23, 34] for exchangeable observations and have
seen interesting generalizations to a partially exchangeable setting [3, 31].

The paper is structured as follows. In Section 2, we introduce necessary concepts and no-
tation and prove that dW is actually a distance. In Section 3, we obtain an integral representa-
tion of the Wasserstein distance between a random vector of measures and the corresponding
comonotonic one. In Section 4, we develop general bounds for the distance between CRVs in
the same Fréchet class, in terms of their bivariate Lévy intensities. In Section 5, we focus on
the distance from exchangeability and obtain an explicit form for the bounds of the previous
section. In particular, in Section 6 we use them to bound the distance between exchange-
ability and the other extreme case, independence. In Section 7, the previous techniques are
used to quantify the dependence of three popular nonparametric priors for partially exchange-
able data, namely compound random measures [17, 46], Clayton Lévy copula [13, 29, 50]
and GM-dependence [18, 32]. In Section 8, we extend the measure of dependence to ran-
dom hazards that are modeled as kernel mixtures over a CRV, with a specific application to
GM-dependence [31]. All proofs are deferred to Section 9.

2. Preliminaries. We first recall definitions and key properties of random vectors of
measures and of the Wasserstein distance. To fix notation, let R+ = (0,+∞) and R

2+ :=
[0,+∞) × [0,+∞) \ {(0,0)}. Moreover, L(X) denotes the law of a random variable X.

Let (X, dX) be a Polish space endowed with a distance dX and the Borel σ -algebra X . We
denote by (MX,MX) the Borel space of boundedly finite measures on X endowed with the
topology of weak� convergence [8]. A random vector of measures is a measurable function
μ̃ = (μ̃1, μ̃2) : � → M2

X
, where (�,��,P�) is a generic probability space and M2

X
= MX ×

MX is endowed with the product σ -algebra. We refer to the projections πi ◦ μ̃ = μ̃i : � →
MX, for i = 1,2, as the marginals of μ̃. Moreover, the random vectors evaluated on a set are
denoted as μ̃(A) = (μ̃1(A), μ̃2(A)) : � → [0,+∞) × [0,+∞), for every A ∈ X .

DEFINITION 1. A random vector of measures μ̃ is a completely random vector (CRV)
if, given a finite collection of disjoint bounded Borel sets {A1, . . . ,An}, the random vectors
{μ̃(A1), . . . , μ̃(An)} are independent.

In particular, this definition entails that the marginal distributions μ̃1, μ̃2 have independent
increments and are thus completely random measures (CRMs) in the sense of Kingman [26].
We point out that the converse is not necessarily true: a random vector of measures whose
marginals are CRMs is not necessarily a CRV. The joint independence of the increments
guarantees that the distribution of μ̃ is characterized by the distribution of the random vectors
evaluated on a set {μ̃(A) | A ∈ X }. Moreover, [24], Theorem 3.19, ensures that, if μ̃ has no
fixed atoms, there exists a Poisson random measure N on R

2+ ×X s.t. for every A ∈ X ,

(2) μ̃(A)
d=

∫
R

2+×A
sN (ds1, ds2, dx),

where s = (s1, s2). The mean measure ν(ds1, ds2, dx) = E(N (ds1, ds2, dx)) satisfies the
following properties: ν(R2+ × {x}) = 0 for every x ∈ X and

(3)
∫
R

2+×A
min{s1 + s2, ε}ν(ds1, ds2, dx) < +∞
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for every bounded A ∈ X and every ε > 0. We will focus on CRVs without fixed atoms
and refer to ν as the intensity measure of μ̃. This will be further assumed to have no atoms.
Campbell’s theorem ensures that from the Lévy intensity of μ̃ one derives the Lévy intensities
of the marginal CRMs μ̃1 and μ̃2, namely

ν1(ds, dx) =
∫
[0,+∞)

ν(ds, ds2, dx), ν2(ds, dx) =
∫
[0,+∞)

ν(ds1, ds, dx).

We underline that the marginal CRMs are not forced to have the same atoms a.s. because the
measure ν may have positive mass on the axes, as it will be clear from Section 6. We say that
μ̃ is infinitely active if for every A ∈ X both the marginal CRMs are infinitely active, that is,

(4)
∫
R+×A

ν1(ds, dx) =
∫
R+×A

ν2(ds, dx) = +∞.

Since most applications of random measures in Bayesian nonparametrics deal with infinitely
active random measures, we concentrate on these.

The distribution of a CRV is characterized by the distribution of its evaluations on a set
{μ̃(A) | A ∈ X }. Thus any distance D on the space P(R2) of probability measures on R

2

determines a distance on the laws of CRVs by considering

sup
A∈X

D
(
L

(
μ̃1(A)

)
,L

(
μ̃2(A)

))
.

The distance dW defined in (1) fits in this general framework, by considering the Wasserstein
distance as metric D. Given π1, π2 two probability measures on a Polish space (X, dX), we
indicate by C(π1, π2) the Fréchet class of π1 and π2, that is, the set of distributions on the
product space whose marginal distributions coincide with π1 and π2, respectively. If Z1 and
Z2 are dependent random variables on X such that their joint law L(Z1,Z2) ∈ C(π1, π2), we
write (Z1,Z2) ∈ C(π1, π2).

DEFINITION 2. The Wasserstein distance of order p ∈ [1,+∞) between π1 and π2 is

Wp,dX(π1, π2) = inf
(Z1,Z2)∈C(π1,π2)

{
E

(
dX(Z1,Z2)

p)} 1
p .

By extension, we refer to the Wasserstein distance between two random elements Xi :
� → X, i = 1,2, as the Wasserstein distance between their laws, that is, Wp,d(X1,X2) =
Wp,d(L(X1),L(X2)). An element of C(L(X1),L(X2)) is referred to as a coupling between
X1 and X2.

Throughout the work, we set p = 2 and (X, dX) = (R2,‖·‖), that is, the Euclidean plane.
We will refer to such distance as the Wasserstein distance and denote it by W , that is,

W(X,Y ) = inf
(ZX,ZY )∈C(X,Y )

{
E

(‖ZX − ZY ‖2)} 1
2 ,

where we have used the vector notation X = (X1,X2) ∈ R
2. The parallelogram rule on

normed spaces ensures that

(5) W(X,Y )2 ≤ 2
(
E

(‖X‖2) +E
(‖Y‖2))

.

In particular, the Wasserstein distance between random elements on R
2 with finite expected

squared norm is finite. Thus, in order for dW in (1) to be finite, we restrict to random vec-
tors of measures with finite second moment E(‖μ̃(X)‖2) = E(μ̃1(X)2)+E(μ̃2(X)2) < +∞.
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Therefore, by standard properties of Poisson random measures, we ask

E
(
μ̃(X)

) =
∫
R

2+×X

sν(ds1, ds2, dx) < +∞,(6)

Var
(
μ̃(X)

) =
∫
R

2+×X

s2ν(ds1, ds2, dx) < +∞,(7)

where s2 = (s2
1 , s2

2) and +∞ = (+∞,+∞). We summarize our findings in the following.

PROPOSITION 1. The function dW : P(M2
X
) × P(M2

X
) → [0,+∞) defines a distance on

the laws of CRVs whose Lévy intensities satisfy (6) and (7).

We conclude this section by recalling some properties of the Wasserstein distance to be
used in the sequel. Let X and Y be two random elements in R

2. A coupling (ZX,ZY ) ∈
C(X,Y ) is said to be optimal if W(X,Y ) = E(‖ZX − ZY ‖2)

1
2 . If an optimal coupling satis-

fies ZX = φ(ZY ) a.s. for some measurable function φ, we refer to φ as an optimal (transport)
map from X to Y . Optimal maps for the Wasserstein distance on the Euclidean line always
exist and are explicitly available; on the contrary, on the Euclidean plane they are not guaran-
teed to exist if X gives nonzero mass to sets of codimension greater or equal to 1. Moreover,
even when the existence is established, there is no explicit way to build such maps, except in
few particular cases; see [51]. However, Knott and Smith [27] appointed derived a sufficient
criterion to establish the optimality of a map, namely to express it as the gradient of a convex
function. We will use this result in a reformulation provided by [47]. When an optimal trans-
port map φ is available, the Wasserstein distance amounts to an expected value with respect
to a degenerate distribution having support on a 2-dimensional subspace of R4. Nonetheless,
the evaluation of such an integral is still a challenging task since bivariate integrals can be
difficult to evaluate not only analytically but also numerically.

3. Distance from exchangeability. Having established conditions for dW in (1) to be a
distance on CRVs, we now use dW to compare CRVs μ̃, ξ̃ in the same Fréchet class, that

is, with equally distributed marginal random measures (μ̃1
d= ξ̃1; μ̃2

d= ξ̃2), and focus on the
comparison between their dependence structures. To this end, we put particular emphasis
on the Wasserstein distance from comonotonic random vectors, which induce exchangeable
priors. In this section, we provide an analytical expression for the optimal transportation
map from a generic CRV to the comonotonic one in the same Fréchet class. This will then
be used to evaluate the exact distance between exchangeability and the other extreme case,
independence.

DEFINITION 3. A random vector of measures μ̃ is said to be completely dependent or
comonotonic if μ̃1 = μ̃2 a.s. We write μ̃ = μ̃co.

In particular, we point out that every random vector of measures μ̃ = (μ̃1, μ̃2) in the

same Fréchet class of μ̃co satisfies μ̃1
d= μ̃2. For this reason, since our main interest lies

in exchangeability, and thus in comonotonicity, throughout the work we deal with random
vectors of measures with equal marginal distributions. It should be stressed, though, that
many of our results and techniques could be easily extended to other settings.

THEOREM 2. Let μ̃ and μ̃co be CRVs in the same Fréchet class s.t. condition (6) on the
Lévy intensities holds. Then

(8) W
(
μ̃(A), μ̃co(A)

)2 = 4
(
E

(
μ̃1(A)2) − ωμ̃,A

)
,
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where ωμ̃,A = E(μ̃1(A)F−1
μ̃1(A)

(Fμ̃1(A)+μ̃2(A)(μ̃1(A) + μ̃2(A))), with FX denoting the cumu-
lative distribution function (cdf) of X.

Upon defining Xi = μ̃i(A) for i = 1,2, it is useful to observe that the right-hand side of
(8) is equal to 4(E(X2

1)−E(X1F
−1
X1

(FX1+X2(X1 +X2)))). In particular, for μ̃ = μ̃co one has

X1 = X2 = X, so that (8) becomes 4(E(X2) − E(XF−1
X (F2X(2X)))) = 0, since F2X(2X) =

FX(X). Moreover, when the distribution of μ̃ is symmetric, that is, L(μ̃1, μ̃2) = L(μ̃2, μ̃1),
one finds the following alternative expression for ωμ̃,A in (8).

LEMMA 3. Let μ̃ be a symmetric CRV satisfying the conditions of Theorem 2. Then

ωμ̃,A = 1

2
E

(
F−1

μ̃1(A)+μ̃2(A)
(U)F−1

μ̃1(A)
(U)

)
,

where U ∼ Unif([0,1]) is a uniform random variable on [0,1].

The expression of ωμ̃,A in Theorem 2 and Lemma 3 involves the dependence structure of
μ̃ and is to be evaluated case-by-case. In some specific cases, it can be computed directly
leading to the exact bivariate Wasserstein distance with respect to a comonotonic random
vector in the same Fréchet class, in short the Wasserstein distance from exchangeability. For
instance, consider a CRV μ̃ind whose marginals are independent gamma CRMs. Recall that
μ̃ is a gamma CRM with base measure αP0 if the Lévy intensity is

(9) π(ds, dx) = αP0(dx)
e−s

s
1(0,+∞)(s) ds,

where α > 0 and P0 is a probability distribution on X. Moreover, μ̃ind is a symmetric CRV,
so that Proposition 3 applies. We define

ωα,P0,A = 1


(2αP0(A) + 1)

×
∫ +∞

0
Inv
αP0(A)

(

(αP0(A))


(2αP0(A))



(
2αP0(A), t

))
e−t t2αP0(A) dt,

where 
(a, s) = ∫ +∞
s e−t ta−1 dt is the upper incomplete gamma function and Inv
a(·) is

the inverse function of 
(a, ·).

COROLLARY 4. Let μ̃ind and μ̃co be in the same Fréchet class with marginal gamma
CRM with base measure αP0. Then

W
(
μ̃ind(A), μ̃co(A)

)2 = 4αP0(A)
(
1 + αP0(A) − ωα,P0,A

)
.

Moreover,

ωα,P0,A = 1

2

∫ 1

0
Inv
2αP0(A)(t) Inv
αP0(A)(t) dt.

For fixed values of αP0(A), we can evaluate this quantity numerically. For example, Fig-
ure 1 corresponds to α = 1 and A = X, so that numerical simulations yield ωα,P0,A ≈ 1.70.
The analytical value is compared with the simulated Wasserstein distance between the empiri-
cal measures, which is known to converge to the Wasserstein distance between the underlying
distributions as the size of the samples diverges. In many other cases, the evaluation of the
expression in Theorem 2 is impossible in practice. For example, this happens if the analyt-
ical expression for Fμ̃1(A) is not available in closed form, or when the dependence between
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FIG. 1. Simulation of the empirical Wasserstein distance between a bivariate distribution with independent
gamma marginals with shape = scale = 1 and a bivariate distribution with a.s. equal gamma marginals of
shape = scale = 1. Simulations were performed with independent samples, independent for each sample size,
using the Python Optimal Transport (POT) package [14].

the random measures is modeled through the bivariate Lévy intensity. Moreover, we observe
that the quantities in Theorem 2 and Corollary 4 depend on A in a nontrivial manner, so that
finding the supremum over all Borel sets as in (1) may not be an easy task. This raises the
need for informative and tractable upper bounds on the distance, whose expression depends
directly on the underlying Lévy intensity. Note that the upper bound in (5) only depends on
the marginal distributions of the random vectors, and thus does not provide any information
on their dependence structures.

4. Bounds on Fréchet classes. Given the difficulty in evaluating the integral expression
of Theorem 2 for the Wasserstein distance between a CRV and a comonotonic one in the same
Fréchet class, we aim at deriving suitable bounds. We first face the problem in general and
develop upper bounds for the Wasserstein distance between two CRVs. Then, in the following
sections, these general bounds will be specialized to the distance from exchangeability, which
is the case of interest for Bayesian inference. Our general bounds rely on a compound Poisson
approximation of the CRVs that is induced by certain compatible families of neighborhoods
of the origin. Henceforth, we assume that μ̃ is an infinitely active CRV s.t. condition (6) on
the Lévy intensity ν holds.

DEFINITION 4. Consider a family B = {B(ε) | ε ∈ (0,1]} of measurable neighborhoods
of the origin in R

2+ s.t.

(B1) the family is increasing, that is, ε1 ≤ ε2 implies that B(ε1) ⊂ B(ε2);
(B2) the Lévy intensity gives zero mass to their intersection, that is, ν(

⋂
ε∈(0,1] B(ε) ×

A) = 0 for every A ∈ X ;
(B3) the sets D = {D(ε) = B(ε)c = R

2+ \ B(ε) | ε ∈ (0,1]} have continuously increasing
mass, that is, there exists r0 = ν(

⋂
ε∈(0,1] D(ε)) s.t. for every r > r0 there exists εr = εr,A s.t.

ν(D(εr) × A) = r .

Then we say that the family B is compatible with μ̃. By extension, we will also refer to the
family of complementary sets D as compatible.

REMARK 1. Some technical comments are in order: (a) The choice of the index set
to be (0,1] is arbitrary. Indeed, one could replace it with any neighborhood of the origin
in R

+. (b) The uncountable intersection
⋂

ε∈(0,1] D(ε) is measurable because the family is
increasing. One can find more on this in Section 9. (c) Property (B2) does not contradict the
continuity of the measure since ν is an infinite measure.
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FIG. 2. Three families of neighborhoods of the origin: (1) B+(ε) = {(s1, s2) | s1 + s2 ≤ ε}; (2) BE1(ε) =
{(s1, s2) | E1(s1)−θ + E1(s2)−θ ≤ ε} with θ = 0.5; (3) Bmin(ε) = {(s1, s2) | min(s1, s2) ≤ ε}.

REMARK 2. A standard way to find a family of measurable neighborhoods of the origin
that satisfy (B1) is to consider the level sets

(10) Bg(ε) = {
(s1, s2) | g(s1, s2) ≤ ε

}
,

where g : [0,+∞) × [0,+∞) → R
+ is a measurable function s.t. g(0,0) = 0. See Fig-

ure 2. Depending on the support of ν, properties (B2) and (B3) may hold. For example, if
g(s1, s2) = min(s1, s2), Bg is not compatible with ν having mass on the axis, whereas it is
compatible with ν being absolutely continuous (a.c.) w.r.t. the Lebesgue measure.

As it will be seen in the sequel, we will mostly be interested in Lévy intensities that are
a.c. w.r.t. the Lebesgue measure or have mass on lines passing through the origin. In these
cases, every continuous map g s.t. g(s1, s2) = 0 if and only if (s1, s2) = (0,0) induces a
compatible family. In particular, we will be interested in the families B+ = {(s1, s2) | s1 +
s2 ≤ ε} and BE1 = {(s1, s2) | E1(s1)

−θ + E1(s2)
−θ ≤ ε} with θ = 0.5 appearing in Figure 2,

where E1(s) = 
(0, s) is the exponential integral.

Given a compatible family D, for every r > r0 and A ∈ X we define the probability distri-
bution ρr,A,D on R

2+ as

(11) ρr,A,D(ds1, ds2) = 1

r
ν(ds1, ds2,A)1D(εr,A)(s1, s2),

where we use the notation ν(ds1, ds2,A) = ∫
A ν(ds1, ds2, dy). As apparent from the proof

of the next theorem, this coincides with the distribution of the jumps of a compound Poisson
approximation of μ̃.

THEOREM 5. Let μ̃1 and μ̃2 be infinitely active CRVs in the same Fréchet class s.t.
condition (6) on the Lévy intensities holds. Then

W
(
μ̃1(A), μ̃2(A)

) ≤ lim
r→+∞

√
rW

(
ρ1

r,A,D1
, ρ2

r,A,D2

)
,

for any Di compatible family for μ̃i , for i = 1,2. Moreover, the upper bound on the right-
hand side is finite and does not depend on D1 and D2.

REMARK 3. Since any CRV μ̃ has infinitely many compatible family, the above theorem
holds also in the case μ̃1 = μ̃2 and D1 
= D2. Since the limit does not depend on the families
D1 and D2, we know that in such case it is equal to zero.
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The proof is detailed in Section 9 and is based on a bound on the Wasserstein distance
between compound Poisson distributions. A similar problem was treated in [37] for Lévy
processes on R. Nonetheless, the extension to R

2 needs a new bound on the compound Pois-
son distributions in R

2, summarized by the following proposition. Indeed, the arguments
used in [37], Theorem 10, could be used to bound the Wasserstein distance from above with√

r + r2W(ρ1
r,A,D1

, ρ2
r,A,D2

), which goes to +∞ as r → +∞.

PROPOSITION 6. Let X
d= ∑Nx

i=1 Xi and Y
d= ∑Ny

i=1 Y i be two compound Poisson pro-
cesses in R

2 s.t. Nx and Ny are Poisson random variables with mean r and {Xi | i ≥ 1} and
{Y i | i ≥ 1} are sequences of independent and identically distributed random elements in R

2,
independent from Nx and Ny , respectively. Then

W(X,Y )2 ≤ rW
(
X1,Y 1)2 + (

r2 − r
)∥∥E(

X1) −E
(
Y 1)∥∥2

.

REMARK 4. Theorem 5 bounds the Wasserstein distance between the CRVs with the
Wasserstein distance between quantities that only depend on the bivariate Lévy intensities.
Yet, the Wasserstein distance between these two quantities suffers from all the technical dif-
ficulties related to the Wasserstein distance in R

2. Hence, it is complicated to evaluate it,
analytically and numerically. The next sections are devoted to this task.

5. Bounds on exchangeability. Our next goal is to measure the dependence of a given
CRV as the Wasserstein distance from exchangeability, which is induced by comonotonic
CRVs. For this reason, we now specialize the results of the previous section, which apply
to all CRVs in the same Fréchet class, to this particular framework of great importance for
Bayesian inference.

In order to evaluate the bound in Theorem 5 numerically, we first need an explicit ex-
pression for the Wasserstein distance between the jumps of the compound Poisson approxi-
mations. With this goal in mind, we first dwell on the Lévy intensity νco of a comonotonic
random vector μ̃co (Figure 3).

PROPOSITION 7. For every A ∈ X , the Lévy intensity νco(ds1, ds2,A) has support on
the bisecting line of R2+, that is,

νco(ds1, ds2,A) = δs1(ds2)ν1(ds1,A) = δs2(ds1)ν2(ds2,A).

It follows that every random vector μ̃ in the same Fréchet class of μ̃co has equal marginal
Lévy intensities ν1(ds, dx) = ν2(ds, dx), which we denote with π(ds, dx). In particular, for
every A ∈ X , we assume that π(ds,A) = π(s,A)ds and it is infinitely active. We denote
with Uπ

A(t) = ∫
[t,+∞) π(s,A)ds its tail integral.

The following theorem provides the exact expression of the limit appearing in Theorem 5
together with a class of upper bounds. The latter are useful when the exact expression cannot

FIG. 3. Support of the Lévy intensity of a comonotonic CRV.
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be evaluated analytically or numerically, as will be seen in Section 7.2. We first define some
relevant quantities:

h
g
ν,A(s) =

∫
R

2+
1(s,+∞)

(
g(t1, t2)

)
ν(dt1, dt2,A);

K
g
ν,A =

2∑
i=1

∫
R

2+

∣∣si − (
Uπ

A

)−1(
h

g
ν,A

(
g(s1, s2)

))∣∣2ν(ds1 ds2,A);
(12)

where g : R2 → R is a measurable map. When g(s1, s2) = s1 + s2 we write h+
ν,A and K+

ν,A.
Since the sum is symmetric and ν has equal marginal measures,

K+
ν,A = 2

∫
R

2+

∣∣s1 − (
Uπ

A

)−1(
h+

ν,A(s1 + s2)
)∣∣2ν(ds1 ds2,A).(13)

THEOREM 8. Let μ̃ and μ̃co satisfy the conditions of Theorem 5 s.t. B+ defined in Re-
mark 2 is compatible with μ̃. Then

(14) lim
r→+∞ rW

(
ρr,A,D,ρco

r,A,Dco
)2 = K+

ν,A.

Moreover, for every continuously differentiable g : R2 → R s.t. Bg is compatible with μ̃,
K+

ν,A ≤ K
g
ν,A.

Theorem 8 thus establishes that g(s1, s2) = s1 + s2 realizes the optimal bound in the class
{Kg

ν,A}. The expression for K+
ν,A resembles the one for the Wasserstein distance in Theorem 2

and is derived in a similar way. Nonetheless, by working at the level of the bivariate Lévy
intensities rather than at the level of the evaluations on a set μ̃(A), we overcome many of the
difficulties related to its evaluation. In particular, when the Lévy intensity ν(·,A) is a.c. w.r.t.
the Lebesgue measure on R

2 for any A in X , K+
ν,A comes in a compelling form. In such a

case, we denote with ν(s1, s2,A) its Radon–Nikodym derivative and define

Kν,A =
∫ +∞

0

(
Uπ

A

)−1(
h+

ν,A(t)
) ∫ t

0
sν(s, t − s,A)ds dt,

where h+
ν,A is as in (12).

THEOREM 9. Let μ̃ and μ̃co satisfy the conditions of Theorem 5. If the Lévy intensity of
μ̃ is such that, for any A ∈X , ν(·,A) is a.c. w.r.t. the Lebesgue measure on R

2, then

lim
r→+∞ rW

(
ρr,A,D,ρco

r,A,Dco
)2 = 4

(∫ +∞
0

s2π(ds,A)ds − Kν,A

)
.

REMARK 5. We observe that the first integral in the bound only depends on the marginal
distributions and provides a general upper bound for the distance. This can be seen as an
improvement of the bound in (5), which amounts to

W
(
μ̃(A), μ̃co(A)

)2 ≤ 4
(∫ +∞

0
s2π(s,A)ds +

∫ +∞
0

sπ(s,A)ds

)
,

where π is the marginal Lévy intensity, as defined at the beginning of the section. On the
other hand, Kν,A provides relevant information on the dependence structure. In Section 7.1,
this will be specialized for a concrete example.
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REMARK 6. When the Lévy intensities are homogeneous, that is,

(15) ν(ds1, ds2, dx) = αP0(dx)ν(ds1, ds2),

where P0 is a probability distribution on X and α > 0, also the marginal Lévy intensity
takes the form π(ds, dx) = απ(s) dsP0(dx) and we denote by Uπ(t) = ∫ +∞

t π(s) ds the tail
integral. If the Lévy intensity is also diffuse, K+

ν,A = αP0(A)Kν , where

Kν =
∫ +∞

0

(
Uπ )−1(

h+
ν (t)

) ∫ t

0
sν(s, t − s) ds dt;

h+
ν (s) =

∫
R

2+
1(s,+∞)(t1 + t2)ν(t1, t2) dt1 dt2.

(16)

In particular, this entails that

dW
(
μ̃, μ̃co)2 ≤ 4α

(∫ +∞
0

s2π(ds) ds − Kν

)
.

6. Independence. In this section, we will use Proposition 6 to bound the distance be-
tween exchangeability and the other extreme case, independence. As we shall see, in this
case the Lévy intensity is not a.c. w.r.t. the Lebesgue measure, and thus the results of Theo-
rem 9 do not apply.

Let μ̃ind be a CRV with independent marginals and let νind denote its Lévy intensity (Fig-
ure 4). An immediate adaptation of [25], Lemma 4.1, shows that the corresponding Lévy
intensities νind(ds1, ds2,A) have support on the axis, namely

νind(ds1, ds2,A) = δ0(ds2)ν
ind
1 (ds1,A) + δ0(ds1)ν

ind
2 (ds2,A).

In our setting, νind
1 (ds1,A) = νind

2 (ds2,A) = π(s,A)ds. Before stating the main result, we
introduce

Kπ,A =
∫ +∞

0

(
Uπ

A

)−1(
2Uπ

A(s)
)
sπ(s,A)ds,

which only depends on the marginal distribution π of the CRVs.

THEOREM 10. Let μ̃ind and μ̃co be in the same Fréchet class s.t. the conditions of The-
orem 5 hold. Then

lim
r→+∞ rW

(
ρind

r,A, ρco
r,A

)2 = 4
(∫ +∞

0
s2π(s,A)ds − Kπ,A

)
.

REMARK 7. Similar to Remark 6, when the Lévy intensities are homogeneous, Kπ,A =
αP0(A)Kπ , where Kπ = ∫ +∞

0 (Uπ)−1(2Uπ(s))sπ(s) ds.

FIG. 4. Support of the Lévy intensities of a CRV with independent marginals.
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We now apply Theorem 10 to the case where the marginal distribution is a gamma CRM
with base measure αP0, as in Corollary 4, which allows us to compare the exact Wasserstein
distance with the relative bound. We first define the constant

(17) γ = 4 − 4
∫ +∞

0
(E1)

−1(
2E1(s)

)
e−s ds,

where, as before, E1(s) = 
(0, s) is the exponential integral. Numerical integration show that
γ ≈ 1.24.

COROLLARY 11. Let μ̃ind and μ̃co be in the same Fréchet class with marginal gamma
CRM with base measure αP0. Then

W
(
μ̃ind(A), μ̃co(A)

)2 ≤ γαP0(A).

In particular, dW(μ̃ind, μ̃co)2 ≤ γα.

In Figure 5, we present a graphical comparison between the exact distance in Corollary 4,
the simulated empirical distance in Figure 1 as the sample size increases and the theoretical
bound established in Theorem 11. We omit the noninformative bound in Remark 5 from the
figure because it is out of scale (equal to 8) and point out that the theoretical bound appears
to be very tight.

Similar results may be achieved for generalized gamma CRMs, whose Lévy intensity is

π(ds, dx) = αP0(dx)e−bss−1−σ1(0,+∞)(s) ds,

for some α > 0, P0 a probability distribution on X, b > 0 and σ ∈ (0,1). In particular, gamma
random measures as defined in (9) are achieved when σ = 0 and b = 1. We define

(18) γb,σ = 4 − 4
1

b
(1 − σ)

∫ +∞
0

Inv
−σ

(
2
(−σ, bs)

)
e−bss−σ ds,

where 
(a, s) = ∫ +∞
s e−t ta−1 dt is the upper incomplete gamma function and Inv
a(·) is

the inverse function of 
(a, ·). Clearly, γ1,0 = γ in (17).

COROLLARY 12. Let μ̃ind and μ̃co be in the same Fréchet class with marginal general-
ized gamma CRM with parameters b, σ and base measure αP0. Then

W
(
μ̃ind(A), μ̃co(A)

)2 ≤ γb,σ αP0(A).

In particular, dW(μ̃ind, μ̃co)2 ≤ γb,σ α.

FIG. 5. Simulations of the empirical Wasserstein distance in Figure 1 compared with the non–informative bound
in Remark 5 and the informative bound in Theorem 11. As detailed in Figure 1, simulations were performed with
independent samples, independent for each sample size, using the Python Optimal Transport (POT) package [14].
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FIG. 6. Numerical integrations of γb,σ . On the left, b = 1 and σ varies from 0 to 0.7. On the right, σ = 0.5
while b varies from 1 to 10.

The bounds in Corollary 12 shed light on the role of the hyperparameters in the distance
between the two extreme cases of independence and exchangeability. In particular, Figure 6
shows that the distance increases linearly as σ increases and logarithmically as b increases.

7. Measuring dependence in nonparametric models. We now analyze three popular
procedures to model the dependence between CRMs through the choice of a hyperparame-
ter, namely compound random measures, Clayton Lévy copula and GM-dependence. These
can be seen as infinite-dimensional extensions of the approximately exchangeable priors sug-
gested by de Finetti [10] for binary data, and further investigated in Bacallado, Diaconis and
Holmes [1]. Our theoretical findings allow for a formal quantification of the dependence in
terms of a meaningful bound on the distance from exchangeability. These bounds are ex-
pressed in terms of the models’ hyperparameters leading to intuitive results, which can also
guide the parameters’ elicitation.

7.1. Compound random measures. Compound random measures, introduced in Griffin
and Leisen [17], provide a general framework for building CRVs. These may be used to
model the dependence between CRMs with many different marginal distributions, such as
gamma, generalized gamma, beta and σ -stable random measures.

DEFINITION 5. A compound random measure μ̃ = (μ̃1, μ̃2) is a CRV of the form(
μ̃1
μ̃2

)
=

+∞∑
i=1

(
m1,i

m2,i

)
JiδXi

,

where η̃ = ∑+∞
i=1 JiδXi

is a CRM with Lévy intensity αP0(dx)ν∗(ds), (m1,i ,m2,i)
iid∼ h and

h is a bivariate density.

In [17], the authors prove that such μ̃ is a CRV with bivariate Lévy intensity

ν(ds1, ds2, dx) = αP0(dx)

∫
R+

1

u2 h

(
s1

u
,
s2

u

)
ν∗(du)ds1, ds2.

Specific choices for ν∗ and h lead to different marginal CRMs and dependence structures.
In particular, by taking h corresponding to the distribution of two independent gamma
(φ,1) random variables and ν∗(du) = (1 − u)φ−1u−11(0,1)(u) du, one achieves marginal
gamma random measures of shape parameter 1 and base measure αP0. We write μ̃ ∼
CoGamma(φ,α,P0). Here, we focus on the case of gamma marginal random measures,
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though the techniques may be generalized. Our aim is to quantify dependence, which is con-
trolled by the parameter φ. We first introduce

Kφ =
∫ +∞

0
E−1

1

(
e(φ, t)

)
φf (φ,2φ, t) dt,

e(φ, t) = 1


(2φ)

∫ 1

0



(
2φ,

t

u

)
(1 − u)φ−1u−1 du, eN(φ, t) =

2φ−1∑
k=0

f (φ, k, t),

f (φ, x, t) = tx


(x)

∫ 1

0
e− t

u (1 − u)φ−1u−x−1 du.

fN(φ,n, t) = tn

n!
φ−1∑
j=0

(
φ − 1

j

)
(−1)jg(n, j, t),

where g(n, j, t) is equal to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t−n+j (n − j − 1)!e−t
n−j−1∑
h=0

th

h! if n > j,

1

(j − n)!
(
e−t

j−n−1∑
j=0

(−1)h(j − n − h − 1)!th + (−1)j−nE1(t)

)
if n ≤ j.

THEOREM 13. Let μ̃ ∼ CoGamma(φ,α,P0) and let μ̃co denote the comonotonic ran-
dom vector in the same Fréchet class. Then

W
(
μ̃(A), μ̃co(A)

)2 ≤ 4αP0(A)(1 − Kφ).

In particular, dW(μ̃, μ̃co)2 ≤ 4α(1 − Kφ). Moreover, when φ ∈ N, e = eN and f = fN.

Theorem 13 allows us to conveniently compute the Wasserstein distance from exchange-
ability for φ an integer value. Table 1 displays some numerical results for different values
of φ. As φ increases, the dependence between the induced marginal gamma random mea-
sures also increases. Moreover, we stress that the case φ = 1 is of particular interest since it
corresponds to the dependence structure discussed in [30].

In Figure 7 we compare the theoretical upper bounds in Theorem 13 with the simulated
Wasserstein distance, as in Figure 5. As in the previous case, our upper bound appears to be
tight and informative.

7.2. Clayton Lévy copula. Lévy copulae provide another popular way to model depen-
dence between CRMs. Standard copulae can be seen as a means to separate the marginal
components of a bivariate distribution from its dependence structure. The same happens

TABLE 1
Values of 1 − Kφ in

Theorem 13, as φ varies

φ 1 − Kφ (≈)

1 0.1426
5 0.0545

10 0.0241
30 0.0081
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FIG. 7. Simulation of the empirical Wasserstein distance between a random vector (μ1(X),μ2(X)) with
marginal compound random measures of parameters (φ,α,P0), where α = 1 and φ varies, and a bivariate dis-
tribution with a.s. equal gamma marginals of shape = scale = 1. Simulations were performed with independent
samples of 10,000 observations using the Python Optimal Transport (POT) package [14].

for their generalization to Lévy intensities, conceived in Tankov [50] and Cont and Tankov
[6] to model the dependence structure between Lévy processes. See also [25] and [13,
29] for uses on CRMs. Given a bivariate Lévy intensity ν(ds1, ds2,A), we indicate by
Ui,A(t) = ∫ ∞

t νi(ds,A), for i = 1,2, its marginal tail integrals. An analogue of Sklar’s theo-
rem states that there exists a Lévy copula c : [0,+∞]2 → [0,+∞] s.t.

ν
(
(t1,+∞) × (t2,+∞) × A

) = c
(
U1,A(t1),U2,A(t2)

)
.

When the Lévy copula c and the tail integrals U1,A, U2,A are sufficiently smooth, ν(ds1,

ds2,A) is recovered by

(19) ν(ds1, ds2,A) = ∂2

∂u1 ∂u2
c(u1, u2)

∣∣∣∣
U1,A(s1),U2,A(s2)

ν1(ds1,A)ν2(ds2,A).

It follows that Lévy copulae are useful to build bivariate Lévy intensities, allowing to gain
insight into their dependence structure. Consider the Clayton Lévy copula, which is a smooth
class of copulae with both independence and complete dependence as limiting cases:

cθ (s1, s2) = (
s−θ

1 + s−θ
2

)− 1
θ ,

for θ > 0. This was used, for example, in [13, 29]. As θ → +∞ one achieves the complete
dependence copula [25] which, by taking equal marginal Lévy intensities, corresponds to
the exchangeability assumption. We write μ̃ ∼ Cl(θ,α,P0) for a CRV with marginal gamma
random measures with base measure αP0 and Lévy copula cθ . Our goal is to show that, as
θ → +∞, μ̃ converges in the Wasserstein distance to the comonotonic random vector with
same marginal distributions and also to provide an upper bound for the rate of convergence.
Define

Kθ = 1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y

− 1
θ

1

)
E−1

1

(
1 + θ

θ
y

− 1
θ

2

)
y

− 1
θ
−2

2 dy1 dy2.

THEOREM 14. Let μ̃ ∼ Cl(θ,α,P0) and let μ̃co be in the same Fréchet class. Then

dW
(
μ̃, μ̃co)2 ≤ 4α(1 − Kθ).

Moreover, as θ → +∞, Kθ goes to 1.
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7.3. GM-dependence. In this section we consider the model introduced in [32], which
relies on CRMs whose dependence is induced by the bivariate Poisson process proposed in
Griffiths and Milne [18].

DEFINITION 6. A CRV ξ is GM-dependent if

(20)

(
ξ̃1

ξ̃2

)
d=

(
μ̃1 + μ̃0
μ̃2 + μ̃0

)
,

where μ̃0, μ̃1 and μ̃2 are three independent CRMs with Lévy intensities

v1(ds, dx) = v2(ds, dx) = αzP0(dx)ρ(s) ds,

v0(ds, dx) = α(1 − z)P0(dx)ρ(s) ds,

where α > 0, z ∈ (0,1), P0 is a probability measure on R and ρ is a measurable function.

Set μ̃ind = (μ̃1, μ̃2) and μ̃co
0 = (μ̃0, μ̃0) to underline that they are, respectively, an

independent and a comonotonic CRV. While the marginal Lévy intensity π(ds, dx) =
αP0(dx)ρ(s) ds of the CRV ξ is available, the corresponding bivariate Lévy intensity is not
known. Nonetheless, the next result provides bounds on its distance from the comonotonic
and the random vector with independent marginals in the same Fréchet class, in terms of the
underlying random vectors μ̃ind, μ̃co

0 .

PROPOSITION 15. Let ξ̃ be a GM-dependent CRV and let ξ̃
co

denote the comonotonic
random vector in the same Fréchet class. Then

dW
(
ξ̃ , ξ̃

co) ≤ dW
(
μ̃ind, μ̃co)

,

dW
(
ξ̃ , ξ̃

ind) ≤ dW
(
μ̃ind

0 , μ̃co
0

)
,

where μ̃co is the comonotonic CRV in the same Fréchet class of μ̃ind and μ̃ind
0 is the CRV

with independent marginals in the same Fréchet class of μ̃co
0 .

When the marginals are generalized gamma CRMs, the specification of the previous
bounds together with Theorem 12 brings to the following. In particular, this covers the case
where the marginals are gamma random measures, as in [32].

COROLLARY 16. Let ξ̃ be a GM-dependent CRV with marginal generalized gamma
random measures with parameters b, σ and total measure α. Then

dW
(
ξ̃ , ξ̃

co)2 ≤ γb,σ αz, dW
(
ξ̃ , ξ̃

ind)2 ≤ γb,σ α(1 − z),

where γb,σ is the constant defined in (18).

As one could expect from the construction in Definition 6, the larger the parameter z, the
closer one is to the situation of independence and the farther from the one of exchangeabil-
ity. Our techniques allow for the derivation of convergence rates for the approximation of
exchangeability as z → 1, in terms of the Wasserstein distance.

Figure 8 below shows the comparison between the simulated Wasserstein distance and
our theoretical upper bound, as z increases, when the marginals are gamma CRMs (σ = 0,
b = 1).

In this section, we have found tight upper bounds for the distance dW from comonotonicity
for notable homogeneous CRVs, leveraging on the simplifications highlighted in Remark 6:
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FIG. 8. Simulation of the Wasserstein distance between a GM-dependent CRV (μ1(X),μ2(X)) of parameter z

with gamma marginals of shape = scale = 1 and a bivariate distribution with a.s. equal gamma marginals of
shape = scale = 1. Simulations were performed with independent samples of 10,000 observations.

since the Lévy measure factorizes, the supremum of the Wasserstein distance over all Borel
sets is always attained on the entire sample space X. In fact, most Bayesian nonparametric
models are based on homogeneous CRVs. However, studying nonhomogeneous CRVs would
certainly be interesting as well, though finding the supremum could be considerably more
complex.

8. Measuring dependence between random hazards. Up to now, we have investigated
the dependence structure at the level of random measures, which constitute the key building
block of most Bayesian nonparametric models. This has the advantage of being generic, in the
sense of being independent of the particular transformation of the random measures leading to
a given class of models. However, a complementary analysis tailored to such specific classes
of models is also of interest. Popular transformations include normalization for modeling
random probability measures [45], exponentiation to obtain a random survival function [11],
simple cumulation to achieve random cumulative hazards [19], as well as kernel mixtures
[12], which lead to (a.s. continuous) random hazard rates and will be the focus of this section.

For F , an absolutely continuous cumulative distribution function on [0,+∞), we recall
that the hazards are defined as h = F ′/(1 − F) and represent the instantaneous risk of fail-
ure. Random mixture hazards are then given by h̃(t) = ∫

X
k(t |x)dμ̃(x), with k : R+ ×X →

[0,+∞) a measurable kernel and μ̃ a CRM. This model was initially proposed with a spe-
cific kernel, a gamma CRM as mixing measure in Dykstra and Laud [12]. It has been further
generalized to generic kernels [34] and to generic CRMs [23] and became quite popular in
the survival analysis and reliability literature leading to interesting theoretical and applied
contributions; see for example, [9, 22, 28, 43]. More recently, the focus has been on the con-
struction of dependent versions of this class of models. Indeed, if μ̃ is a random vector of
measures,

(21) h̃(t) =
∫
X

k(t |x)μ̃(dx)

defines dependent hazards, which may be used as de Finetti priors for partially exchange-
able sequences. Notable examples include hierarchical dependent structures [3] and GM-
dependent structures [31]. The results of Section 5 and Section 7 may be adapted to quantify
the dependence between the random hazards when μ̃ is a CRV. This brings to a direct measure
of dependence between the de Finetti priors corresponding to different groups.

A first key result is Lemma 17 applied to the function f (·) = k(t |·), which leads to the

expression h̃(t)
d= μ̃t (X) for an appropriate CRV μ̃t . Given two measure spaces X1 and
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X2, we recall that if ν is a measure on X1 and g : X1 → X2 is a measurable function, the
pushforward measure g#ν on X2 is defined by (g#ν)(A) = ν(g−1(A)).

LEMMA 17. Let μ̃ be a CRV with intensity measure ν and let f : X → R
+ be a mea-

surable function. Then the random vector of measures μ̃f (dx) = f (x)μ̃(dx) is a CRV
with Lévy intensity equal to the pushforward measure νf = pf #ν where pf (s1, s2, x) =
(s1f (x), s2f (x), x).

Lemma 17 may be seen as a multivariate extension of [4], Lemma 6. In particular, we ob-
serve that the hazard rates h̃

co
induced by a comonotonic CRV μ̃co through (21) are comono-

tonic, that is, h̃co
1 (t) = h̃co

2 (t) a.s. for every t . Similarly, when μ̃ind is the independent CRV,

the induced hazards h̃
ind

are independent. We use this observation to study the Wasserstein
distance between the dependent hazards and the two extreme cases of comonotonicity and in-
dependence. Proposition 18 deals with the GM-dependent hazards of [31] when the marginals
are gamma random measures and the kernel of the type of Dykstra and Laud [12], namely
k(t |x) = β(y)1[0,t](x), which is a popular choice for modeling increasing hazards. For sim-
plicity, we restrict to constant functions β(s) = β , which are the most common choice in
applications. In such scenario, one usually considers the base measure of the gamma ran-
dom measure to be equal to the Lebesgue measure on a large time interval [0, T ], that is,
αP0(ds) = 1[0,T ](s) ds, so that X= R. Let

(22) γβ = 4 − 4β

∫ +∞
0

(E1)
−1

(
2E1

(
s

β

))
e
− s

β ds.

PROPOSITION 18. Let h̃ be dependent hazards as defined in (21) s.t. μ̃ is a GM–
dependent CRV (20) with marginal gamma CRM of base measure αP0(ds) = 1[0,T ](s) ds

and k(t |x) = β1[0,t](x), with β > 0. If h̃
co

, h̃
ind

are in the same Fréchet class as h̃, for every
t ∈ [0, T ],

W
(
h̃(t), h̃

co
(t)

)2 ≤ γβtz, W
(
h̃(t), h̃

ind
(t)

)2 ≤ γβt (1 − z),

where γβ is the constant defined in (22).

9. Proofs.

9.1. Background results. We first recall some key results concerning the Wasserstein dis-
tance. See [2], Lemmas 8.6 and 8.8. If (X1, . . . ,Xn) and (Y 1, . . . ,Y n) are tuples of indepen-
dent random vectors on R

2, then

(23) W
(
X1 + · · · + Xn,Y 1 + · · · + Y n) ≤

n∑
i=1

W
(
Xi ,Y i).

Moreover, if X and Y are two random vectors on R
2 with finite second moment, then

(24) W(X,Y )2 = W
(
X −E(X),Y −E(Y )

)2 + ∥∥E(X) −E(Y )
∥∥2

.

Next, if P1, P2, Q1, Q2 are probability measures, then for every α ∈ [0,1],
W

(
αP1 + (1 − α)P2, αQ1 + (1 − α)Q2

)
≤ αW(P1,Q1) + (1 − α)W(P2,Q2).

(25)

Furthermore, we recall [47], Theorem 12, to establish the optimality of a transport map.
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THEOREM 19 (Rüschendorff 1991). If X is a random object on R
2 and φ : R2 → R

2

is continuously differentiable, then (X, φ(X)) is an optimal coupling with respect to the 2-
Wasserstein distance if and only if the following hold:

1. φ is monotone, that is, 〈x − y, φ(x) − φ(y)〉 ≥ 0 for every x,y ∈ R
2, where 〈·, ·〉

indicates the standard scalar product on R
2;

2. The matrix Dφ = ( ∂φi

∂xj

)
i,j is symmetric.

9.2. Proof of Theorem 2. The proof of Theorem 2 is based on the following result, which
will also be instrumental to further proofs. As before, FX denotes the cdf of X.

THEOREM 20. Let X1, X2, X be possibly dependent random variables whose law is a.c.
w.r.t. the Lebesgue measure on R. Then, for every continuously differentiable g : R2 → R,
the map

(x1, x2)�→φg(x1, x2) = (
F−1

X ◦ Fg(X1,X2) ◦ g(x1, x2),F
−1
X ◦ Fg(X1,X2) ◦ g(x1, x2)

)
,

provides a transportation map between L(X1,X2) and L(X,X). Moreover,

(x1, x2)�→φ(x1, x2) = (
F−1

X ◦ FX1+X2(x1 + x2),F
−1
X ◦ FX1+X2(x1 + x2)

)
,

is an optimal transport map.

PROOF. First, observe that Fg(X1,X2)◦g(X1,X2) ∼ Unif([0,1]). Since X is a.c. w.r.t., the

Lebesgue measure on R, F−1
X ◦Fg(X1,X2) ◦g(X1 +X2)

d= X. This ensures that φg is indeed a
coupling between (X1,X2) and (X,X). In order to prove that φ is an optimal transport map,
we refer to the sufficient conditions described in Theorem 19. Note that〈

x − y, φ(x) − φ(y)
〉

= (x1 − y1 + x2 − y2)
(
F−1

X ◦ FX1+X2(x1 + x2) − F−1
X ◦ FX1+X2(y1 + y2)

)
.

Since cdfs are nondecreasing functions, and the inverse of a nondecreasing function is
nondecreasing as well, F−1

X is nondecreasing. Thus x1 + x2 ≤ y1 + y2, if and only if
F−1

X ◦ FX1+X2(x1 + x2) ≤ F−1
X ◦ FX1+X2(y1 + y2). It follows that the previous expression is

always nonnegative, and the monotonicity condition holds. As for the symmetry, this easily
holds since the two components of φ are the same and are symmetric in the two arguments.

�

Now consider μ̃(A) = (X1,X2) and μ̃co(A) = (X,X). Theorem 20 guarantees that

W
(
μ̃(A), μ̃co(A)

)2 =
2∑

i=1

E(
∣∣μ̃i(A) − F−1

μ̃1(A)

(
Fμ̃1(A)+μ̃2(A)

(
μ̃1(A) + μ̃2(A)

))∣∣)2

and note that F−1
μ̃1(A)

(Fμ̃1(A)+μ̃2(A)(μ̃1(A) + μ̃2(A))
d= μ̃1(A). Thus, we have

W
(
μ̃(A), μ̃co(A)

)2 = 4
(
E

(
μ̃1(A)2) − ωμ̃,A

)
.

9.3. Proof of Lemma 3. Let μ̃(A) = (X1,X2), so that ωμ̃,A = E(X1F
−1
X1

(FX1+X2(X1 +
X2))). Since L(X1,X2) = L(X2,X1),

E
(
X1F

−1
X1

(
FX1+X2(X1 + X2)

)) = 1

2
E

(
(X1 + X2)F

−1
X1

(
FX1+X2(X1 + X2)

))
.

A change of variable U = FX1+X2(X1 + X2) ∼ Unif([0,1]) leads to the conclusion.
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9.4. Proof of Corollary 4. The proof is based on Theorem 2 and Proposition 3. First, ob-
serve that μ̃1(A) ∼ gamma(αP0(A),1). Thus E(μ̃1(A)2) = αP0(A)(1+αP0(A)). Moreover,
ωμ̃,A can be rewritten as

E(μ̃1(A)S−1
μ̃1(A)

(
Sμ̃1(A)+μ̃2(A)

(
μ̃1(A) + μ̃2(A)

)))
,

where SX denotes the survival function. Now, since μ̃1(A) and μ̃2(A) are independent,
μ̃1(A) + μ̃2(A) ∼ gamma(2αP0(A),1). Thus, we have

ωμ̃,A =
∫ +∞

0

∫ +∞
0

s1 Inv
αP0(A)

(

(αP0(A))


(2αP0(A))



(
2αP0(A), s1 + s2

))

· ραP0(A)(s1)ραP0(A)(s2) ds1 ds2

with ρφ the density function of a gamma(φ,1). With a change of variables (t1, t2) = (s1, s1 +
s2), this is equal to ∫ +∞

0
Inv
αP0(A)

(

(αP0(A))


(2αP0(A))



(
2αP0(A), t2

))

·
∫ t2

0
t1ραP0(A)(t1)ραP0(A)(t2 − t1) dt1 dt2.

Now, t1ραP0(A)(t1) = αP0(A)ραP0(A)+1(t1), so that∫ t2

0
t1ραP0(A)(t1)ραP0(A)(t2 − t1) dt1 dt2

is proportional to the convolution between two gamma random variables with parameters,
respectively, (αP0(A)+ 1,1) and (αP0(A),1), evaluated in t2. This corresponds to the density
of a gamma(2αP0(A) + 1,1) random variable evaluated in t2. Thus ωμ̃,A is equal to

αP0(A)


(2αP0(A) + 1)

∫ +∞
0

Inv
αP0(A)

(

(αP0(A))


(2αP0(A))



(
2αP0(A), t

))
e−t t2αP0(A) dt.

The alternative expression for ωα,P0,A follows similarly from Proposition 3.

9.5. Proof of Theorem 5. We show that for every real sequence {rn | n ∈ N} s.t.
limn→+∞ rn = +∞,

(26) W
(
μ̃1(A), μ̃2(A)

) ≤ lim
n→+∞

√
rnW

(
ρ1

rn,A,D1
, ρ2

rn,A,D2

)
.

Since both complementary families D1, D2 have continuously increasing mass, there exists
n0 s.t. for every n > n0 there exist ε1

n,A, ε2
n,A > 0 s.t.,

(27) rn = ν1(
D

(
ε1
n,A

) × A
) = ν2(

D
(
ε2
n,A

) × A
)
.

Before moving to the core of the proof, we show that

(28) lim
n→+∞ εi

n,A = 0.

We prove this by contradiction. Supposing (28) does not hold, there must be a subsequence
{εi

hn,A} converging to a (possibly infinite) limit εi∗ 
= 0. Since limn→+∞ rn = +∞, also
limn→+∞ rhn = +∞. Then there is at least one increasing subsequence {rkn | n ∈ N} ⊂ {rhn |
n ∈N} s.t. limn→+∞ εi

kn,A = εi∗ and limn→+∞ rkn = +∞.

Since D is increasing and ν is monotone, rkn ≤ rkn+1 implies D(εi
kn,A) ⊂ D(εi

kn+1,A
). Thus

by the monotone convergence theorem,

+∞ = lim
n→+∞νi(D(

εi
kn,A

) × A
) = νi(D(

εi∗
) × A

)
.
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Given the Lévy intensity is finite outside of the origin by (3), νi(D(εi∗) × A) < +∞, which
is a contradiction. Thus (28) holds.

Now recall that by (2) there exist Poisson random measures N i s.t. for every A ∈ X ,
μ̃i (A) = ∫

R
2+×A sN i (ds1, ds2, dx), for i = 1,2. Since the evaluations of Poisson random

measures on disjoint sets are independent, by (23) for every n > 0,

W
(
μ̃1(A), μ̃2(A)

)
≤ W

(∫
B1(ε

1
n,A)×A

sN 1(ds1, ds2, dx),

∫
B2(ε

2
n,A)×A

sN 2(ds1, ds2, dx)

)
(29)

+W
(∫

D1(ε
1
n,A)×A

sN 1(ds1, ds2, dx),

∫
D2(ε

2
n,A)×A

sN 2(ds1, ds2, dx)

)
.(30)

We prove that the first summand (29) goes to zero as n → +∞. By bounding the Wasser-
stein distance with the second moments as in (5) and using the properties of Poisson random
measures, (29) is bounded from above by

(
2

∑
i=1,2
j=1,2

∫
Bi(ε

i
n,A)

s2
j νi(ds1, ds2,A) +

(∫
Bi(ε

i
n,A)

sj ν
i(ds1, ds2,A)

)2) 1
2
.

Thanks to the finiteness of the integrals in (6) and (7), we may apply the dominated conver-
gence theorem and bring the limit as n → +∞ inside both integrals. In order to prove that
the above expression goes to zero, we thus need to show that∫

R
2+

1⋂
n∈N Bi(ε

i
n,A)(s1, s2)s

k
j νi(ds1, ds2,A) = 0,

where i, j, k = 1,2. By absolute continuity of the integral, it suffices to show that
νi(

⋂
n∈N Bi(ε

i
n,A) × A) = 0. Now, by assumptions on the family B , we know that

νi(
⋂

ε∈(0,1] Bi(ε) × A) = 0. We then prove that

(31) νi( ⋂
n∈N

Bi

(
εi
n,A

) × A
) ≤ νi( ⋂

ε∈(0,1]
Bi(ε) × A

) = 0,

by showing that
⋂

n∈N Bi(ε
i
n,A) ⊂ ⋂

ε∈(0,1] Bi(ε). Let x ∈ ⋂
n∈N Bi(ε

i
n,A). Since

limn→+∞ εi
n,A = 0 by (28), for every ε ∈ (0,1] there exists n s.t. εi

n,A < ε. Since Bi is
an increasing family, x ∈ Bi(ε

i
n,A) ⊂ Bi(ε). Thus x ∈ ⋂

ε>0 Bi(ε).
As for the second summand (30), since the Lévy intensities are bounded outside of the

origin by (3), 1Di(ε
i
n,A)(s)N i (ds1, ds2, dy) is a Poisson random measure with finite mean for

i = 1,2. Thus by [48], Proposition 19.5, their integrals have a compound Poisson distribu-
tion on R

2 with intensity measure
∫
A 1Di(ε

i
n,A)(s)ν

i(ds1, ds2, dy) and same total measure rn.

Hence we have

∫
Di(ε

i
n,A)×A

sN i (ds1, ds2, dx)
d=

Ni∑
j=1

Xi
j ,

where Ni has a Poisson distribution with mean rn and is independent of {Xi
j | j ≥ 1}, which

are i.i.d. random variables with distribution ρi
rn,A,Di

. Proposition 6 thus entails

W
(

N1∑
j=1

X1
j ,

N2∑
j=1

X2
j

)
≤ √

rnW
(
ρ1

rn,A,D1
, ρ2

rn,A,D2

) + (
r2
n + rn

)∥∥E(
X1

1
) −E

(
X2

1
)∥∥2

.
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Now, (r2
n + rn)‖E(X1

1) −E(X2
1)‖2 is equal to(

1 + 1

rn

) ∑
i=1,2

∣∣∣∣
∫
D1(ε

1
n,A)

siν
1(ds1, ds2,A) −

∫
D2(ε

2
n,A)

siν
2(ds1, ds2,A)

∣∣∣∣2,
which as n → +∞ by the monotone convergence theorem converges to

(32)
∑

i=1,2

∣∣∣∣
∫
R

2+
siν

1(ds1, ds2,A) −
∫
R

2+
siν

2(ds1, ds2,A)

∣∣∣∣2.
Since the vectors are in the same Fréchet class, (32) is equal to 0. The bound in (26), hence,
follows by taking the limit as n goes to +∞. In order to prove its finiteness, it suffices to
observe that by (5),

√
rnW(ρ1

rn,A,D1
, ρ2

rn,A,D2
) is bounded from above by the square root of

2
2∑

i=1

∫
R

2+

(
s2

1 + s2
2
)
νi(ds1, ds2,A) +

(∫
R

2+
(s1 + s2)ν

i(ds1, ds2,A)

)2
,

which is finite by (6) and (7).
We now show that the limit does not depend on the choice of compatible families D1 and

D2. First, we prove that, given a bivariate Lévy intensity ν with compatible families D and
D∗, one has

(33) lim
n→+∞

√
rnW(ρrn,A,D,ρrn,A,D∗) = 0.

For every n, consider εn,A and ε∗
n,A as in (27). Let then �(n) = D(εn,A) ∩ D∗(ε∗

n,A) and
denote by qn = ν(�(n) × A). We define

P 0
n (ds1, ds2) = 1

qn

1�(n)(s1, s2)ν(ds1, ds1,A),

Pn(ds1, ds2) = 1

rn − qn

1D(εn,A)\�(n)(s1, s2)ν(ds1, ds1,A),

P ∗
n (ds1, ds2) = 1

rn − qn

1D∗(ε∗
n,A)\�(n)(s1, s2)ν(ds1, ds1,A)

and consider the decompositions

ρrn,A,D = qn

rn
P 0

n + rn − qn

rn
Pn, ρrn,A,D∗ = qn

rn
P 0

n + rn − qn

rn
P ∗

n .

By the convexity property in (25), since P 0
n is a shared component,

W(ρrn,A,D,ρrn,A,D∗) ≤ rn − qn

rn
W

(
Pn,P

∗
n

)
.

Hence by (5),
√

rnW(ρrn,A,D,ρrn,A,D∗) is bounded from above by the squared root of

rn − qn

rn
4
(∫

R
2+

(
s2

1 + s2
2
)
ν(ds1, ds2,A) +

(∫
R

2+
(s1 + s2)ν(ds1, ds2,A)

)2)
.

Since D(εn,A) \ �(n) ⊂ D∗(ε∗
n,A)c, rn − qn = ν(D(εn,A) \ �(n) × A) ≤ ν(D∗(ε∗

n,A)c × A).
Thus, by reasoning as in (31),

lim sup
n→+∞

rn − qn ≤ lim sup
n→+∞

ν
(
D∗(

ε∗
n,A

)c × A
) = ν

( ⋂
n∈N

B∗(
ε∗
n,A

) × A
) = 0.

Hence, limn→+∞ rn−qn = 0 and we conclude that limrn→+∞
√

rnW(ρrn,A,D,ρrn,A,D∗) = 0.
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Now, consider two compatible families D∗
1 and D∗

2 for ν1 and ν2, respectively. By the
triangular inequality, W(ρ1

rn,A,D∗
1
, ρ2

rn,A,D∗
2
) is bounded from above by

W
(
ρ1

rn,A,D∗
1
, ρ1

rn,A,D1

) +W
(
ρ1

rn,A,D1
, ρ2

rn,A,D2

) +W
(
ρ2

rn,A,D2
, ρ2

rn,A,D∗
2

)
.

Then, thanks to (33) by taking the limit as n → +∞,

lim
n→+∞

√
rnW

(
ρ1

rn,A,D∗
1
, ρ2

rn,A,D∗
2

) ≤ lim
n→+∞

√
rnW

(
ρ1

rn,A,D1
, ρ2

rn,A,D2

)
.

Equality follows by changing the role of (D1,D2) and (D∗
1 ,D∗

2) in the previous argument.

9.6. Proof of Proposition 6. We rely on the key identity (24). First, we observe that
E(X) = rE(X1) and E(Y ) = rE(Y 1). By considering the couplings s.t. Nx = NY a.s.,

W
(
X − rE

(
X1)

,Y − rE
(
Y 1))2

≤ inf
C((Xi )i≥1,(Y

i )i≥1)
E

(∥∥∥∥∥
Nx∑
i=1

Xi − rE
(
X1) −

Nx∑
i=1

Y i + rE
(
Y 1)∥∥∥∥∥

2)

= inf
C((Xi )i≥1,(Y

i )i≥1)
E

(
Var

(
Nx∑
i=1

Xi
1 − rE

(
X1

1
) −

Nx∑
i=1

Y i
1 − rE

(
Y 1

1
) ∣∣∣ Nx

))

+E

(
Var

(
Nx∑
i=1

Xi
2 − rE

(
X1

2
) −

Nx∑
i=1

Y i
2 − rE

(
Y 1

2
) ∣∣∣ Nx

))
.

By considering couplings s.t.
(
Xi − Y i

)
i≥1 are independent and identically distributed,

≤ inf
C(X1,Y 1)

E
(
Nx Var

(
X1

1 − Y 1
1
)) +E

(
Nx Var

(
X1

2 − Y 1
2
))

= rW
(
X1,X2)2 − r

∥∥E(
X1 − Y 1)∥∥2

.

Finally, by applying (24) we conclude the proof.

9.7. Proof of Proposition 7. A CRV μ̃ = (μ̃1, μ̃2) is comonotonic if μ̃1 = μ̃2 a.s. By
uniqueness of the Lévy intensity is suffices to show that νco induces exchangeability. Con-
sider the set D = {(s1, s2) | (s1, s2) ∈R

2+, s1 
= s2}. By definition of Poisson random measure,
for every A ∈ X ,

P
(
N (D × A) = 0

) = exp
{−νco(D × A)

} = 1.

Thus with probability 1,

μ̃1(A) =
∫
R

2+×A
s1N (ds1, ds2, dx) =

∫
R

2+×A
s2N (ds1, ds2, dx) = μ̃2(A).

9.8. Proof of Theorem 8. Let (X1,X2) ∼ ρr,A,D and (X,X) ∼ ρco
r,A,Dco . For every con-

tinuously differentiable function g, we define

K
g
r,ν,A,D,Dco =

2∑
i=1

∫
R

2+

∣∣si − F−1
X ◦ Fg(X1,X2) ◦ g(s1, s2)

∣∣2ρr,A(ds1 ds2).

Theorem 20 guarantees that W(ρr,A,D,ρco
r,A,Dco)

2 ≤ K
g
r,ν,A,D,Dco , and the equality holds for

g(s1, s2) = s1 + s2. In order to find the limit of rK
g
r,ν,A,D,Dco as r → +∞, we must establish

the conditions for the monotone convergence theorem. Since by Theorem 5 the limit does not
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depend on the compatible families D and Dco, we choose D = Dg = (Bg)c defined in (10),
and Dco = D+ as in (1) of Figure 2. First, rewrite the bound as

2∑
i=1

∫
R

2+

∣∣si − S−1
X ◦ Sg(X1,X2)

(
g(s1, s2)

)∣∣21(εr,A,+∞)

(
g(s1, s2)

)
ν(ds1, ds2,A),

where SX is the survival function of X. The choice Dco = D+ guarantees that SX(t) =
1
r
Uπ

A (t)1(ε/2,+∞)(t); see Figure 3. Thus ∀s ∈ (0,1], S−1
X (s) = (Uπ

A)−1(rs). On the other
hand, Sg(X1,X2)(t) = r−1h

g
r,ν,A(t), where

h
g
r,ν,A(t) =

∫
R

2+
1(t,+∞)

(
g(t1, t2)

)
1(εr,A,+∞)

(
g(t1, t2)

)
ν(dt1, dt2,A).

Thus rK
g

r,ν,A,Dg,D+ is equal to

2∑
i=1

∫
R

2+

∣∣si − (
Uπ

A

)−1(
h

g
r,ν,A

(
g(s1, s2)

))∣∣21(εr,A,+∞)

(
g(s1, s2)

)
ν(ds1, ds2,A).

Since for every (s1, s2) in the domain of integration g(s1, s2) > εr,A, every (t1, t2) s.t.
g(t1, t2) > g(s1, s2) satisfies g(t1, t2) > εr,A. Thus for every (s1, s2) in the domain of inte-
gration,

h
g
r,ν,A

(
g(s1, s2)

) =
∫
R

2+
1(g(s1,s2),+∞)

(
g(t1, t2)

)
ν(dt1, dt2,A) = h

g
ν,A

(
g(s1, s2)

)
,

where h
g
ν,A is defined in (12). The statement in (14) follows by the monotone convergence

theorem as r → +∞.

9.9. Proof of Theorem 9. We first provide a preliminary result, whose proof we report
because it does not seem to be readily available in the literature.

LEMMA 21. Let f : R+ → R+ be an integrable nonincreasing function and f −1(x) =
sup{t | f (t) ≤ x} its generalized inverse. Then∫ +∞

0
f (x) dx =

∫ +∞
0

f −1(z) dz.

PROOF. Consider the change of variable z = f (x). Since f is integrable,
limx→+∞ f (x) = 0. Moreover, since f is monotone its derivative is well defined almost
everywhere. Thus∫ +∞

0
f (x) dx = −

∫ f (0)

0
z

1

f ′(f −1(z))
dz = −

∫ +∞
0

z
(
f −1)′

(z) dz,

having set f (0) = limx→0+ f (x) ∈ [0,+∞]. By integration by parts, this is equal to

−zf −1(z)|f (0)
0 +

∫ f (0)

0
f −1(z) dz.

If f (0) < +∞, the first summand is clearly 0. Otherwise, we observe that

−zf −1(z)|+∞
0 = xf (x)|+∞

0 = 0,

because of the integrability assumption. Thus in either case,∫ +∞
0

f (x) dx =
∫ f (0)

0
f −1(z) dz =

∫ +∞
0

f −1(z) dz,

since if f (0) < +∞, f −1 is equal to zero on the interval (f (0),+∞). �
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Theorem 8 ensures that the limit, as r → +∞, of rW(ρr,A,D,ρco
r,A,Dco) is equal to

2
∫
R

2+

∣∣∣∣s1 − (
Uπ

A

)−1
(∫

R
2+

1(s1+s2,+∞)(t1 + t2)ν(t1, t2) dt1 dt2

)∣∣∣∣2ν(s1, s2,A)ds1 ds2.

By expanding the square of the binomial, the integral is divided in three summands. We treat
them separately. First,∫

R
2+

s2
1ν(s1, s2,A)ds1 ds2 =

∫
R+

s2
1π(s1,A)ds1.

Next, with a change of variable (z1, z2) = (s1, s1 + s2),

(34)

∫
R

2+

(
Uπ

A

)−1
(∫

{t1+t2>s1+s2}
ν(t1, t2,A)dt1 dt2

)2
ν(s1, s2,A)ds1 ds2

=
∫ +∞

0

(
Uπ

A

)−1
(∫

{t1+t2>z2}
ν(t1, t2,A)dt1 dt2

)2(∫ z2

0
ν(z1, z2 − z1,A)dz1

)
dz2.

Simple calculations on the derivative of an integral lead to
d

dz

∫
{t1+t2>z}

ν(t1, t2,A)dt1 dt2 =
∫ z

0
ν(t1, z − t1,A)dt1.

Thus with a change of variable s = ∫
{t1+t2>z2} ν(t1, t2,A)dt1 dt2, the integral in (34) is equal

to
∫ +∞

0 (Uπ)−1(s)2 ds. The function Uπ
A(

√
s) is nondecreasing and has inverse |(Uπ

A)−1(s)|2.
By applying Lemma 21, its integral on (0,+∞) is equal to∫ +∞

0
Uπ

A(
√

s) ds =
∫ +∞

0

∫ +∞
√

s
π(dt,A)ds =

∫ +∞
0

t2π(dt,A).

Finally, the expression of the third summand, which is equal to Kν,A in the statement, derives
from the same change of variables.

9.10. Proof of Theorem 10. The proof is similar to the one of Theorem 9. By looking at
the support of the Lévy intensity in Figure 4, Theorem 8 ensures that the limit as r → +∞
of rW(ρr,A,D,ρco

r,A,Dco) is equal to

2
∫
R

2+

∣∣s1 − (
Uπ

A

)−1(
2Uπ

A(s1 + s2)
)∣∣2ν(s1, s2,A)ds1 ds2.

As in the previous proof, the integral is divided in three summands, which we treat separately.∫
R

2+
s2

1ν(s1, s2,A)ds1 ds2 =
∫
R+

s2
1π(s1,A)ds1.

Next, by looking at the support of the Lévy intensity,∫
R

2+

(
Uπ

A

)−1(
2Uπ

A(s1 + s2)
)2

ν(s1, s2,A)ds1 ds2

= 2
∫ ∞

0

(
Uπ

A

)−1(
2Uπ

A(s)
)2

π(s,A)ds.

Since d
ds

Uπ
A(s) = −π(s,A), with a change of variable s = 2Uπ

A(s), it is equal to∫ +∞
0 (Uπ)−1(s)2 ds. By reasoning as in Theorem 9, this is equal to

∫
R+ s2

1π(s1,A)ds1 as
well. Finally, since the integrand is equal to zero on the vertical axis, we have∫

R
2+

s1
(
Uπ

A

)−1(
2Uπ

A(s1 + s2)
)
ν(s1, s2,A)ds1 ds2

=
∫ ∞

0
s1

(
Uπ

A

)−1(
2Uπ

A(s1)
)
π(s1,A)ds1.
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9.11. Proof of Theorem 13. The proof is based on Theorem 9. Since the Lévy intensi-
ties are homogeneous, we apply (16). The marginals are gamma random measures of shape
parameter 1, thus Uπ(t) = E1(t) and∫ +∞

0
s2π(s) ds =

∫ +∞
0

se−s ds = 1.

As for the other quantities appearing in (16), we observe that if ρφ is the density of a
gamma(φ,1) distribution,∫

R
2+

1(t,+∞)(z1 + z2)ν(z1, z2) dz1 dz2

=
∫ 1

0

(∫
R

2+
1(t,+∞)(z1 + z2)ρφ

(
z1

u

)
ρφ

(
z2

u

)
1

u2 dz1 dz2

)
(1 − u)φ−1

u
du.

With a change of variables (v1, v2) = ( z1
u
, z2

u
),

=
∫ 1

0

(∫
R

2+
1( t

u
,+∞)(v1 + v2)ρφ(v1)ρφ(v2) dv1 dv2

)
(1 − u)φ−1

u
du

=
∫ 1

0
P

{
X1 + X2 >

t

u

}
(1 − u)φ−1

u
du,

where X1,X2
iid∼ gamma(φ,1) random variables. Thus X1 + X2 ∼ gamma(2φ,1) and its

survival function in t
u

is equal to

(2φ, t

u
)


(2φ)
. Next, we observe that∫ t

0
sν(s, t − s) ds

=
∫ 1

0

(1 − u)φ−1

u3

(∫ t

0
sρφ

(
s

u

)
ρφ

(
t − s

u

)
ds

)
du.

With a change of variable v = s
u

,

=
∫ 1

0

(1 − u)φ−1

u

(∫ t
u

0
vρφ(v)ρφ

(
t

u
− v

)
ds

)
du.

Now, vρφ(v) = φρφ+1(v). Thus the inner integral is φ times the convolution of ρφ and ρφ+1
evaluated in t

u
. Now, if X ∼ gamma(φ,1) is independent from Y ∼ gamma(φ + 1,1), X +

Y ∼ gamma(2φ + 1,1). Thus∫ t
u

0
vρφ(v)ρφ

(
t

u
− v

)
ds = φ


(2φ + 1)
e− t

u

(
t

u

)2φ

,

from which the final expression for the integral easily follows. We now sketch the proof for
φ integer:




(
2φ,

t

u

)
= (2φ − 1)!e− t

u

2φ−1∑
k=0

1

k!
(

t

u

)k

.

Thus e(φ, t) is equal to

2φ−1∑
k=0

tk

k!
∫ 1

0
e− t

u (1 − u)φ−1u−k−1 du,
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which coincides with a sum over k of f (φ, k, t). In order to derive the expression for
f (φ,n, t) for a generic integer n, we apply the binomial formula

(1 − u)φ−1 =
φ−1∑
j=0

(
φ − 1

j

)
(−u)j ,

from which we easily derive

g(n, j, t) =
∫ 1

0
e− t

u u−n−1+j du = t−n+j
(n − j, t).

The final expression derives from writing 
(k, t) as a sum, both when k is a positive integer
and when it is a negative one.

9.12. Proof of Theorem 14. By resorting to (19), one derives the expression for
ν(ds1, ds2,A):

αP0(A)(1 + θ)
(
E1(s1)

−θ + E1(s2)
−θ )− 1

θ
−2

E1(s1)
−θ−1E1(s2)

−θ−1 e−(s1+s2)

s1s2
ds1 ds2.

We obtain the bound by applying Theorem 8 to the function

g(s1, s2) = E1(s1)
−θ + E1(s2)

−θ ,

which trivially satisfies the necessary conditions. Since g is symmetric, K
g
ν,A is equal to

2α

∫
R

2+

∣∣∣∣s1 − (
Uπ )−1

(∫
R

2+
1[g(s1,s2),+∞)

(
g(t1, t2)

)
ν(t1, t2) dt1 dt2

)∣∣∣∣2ν(s1, s2) ds1 ds2.

With a change of variables (x1, x2) = (E1(s1)
−θ ,E1(s2)

−θ ),∫
R

2+
1(g(s1,s2),+∞)

(
g(t1, t2)

)
ν(t1, t2) dt1 dt2

= 1 + θ

θ2

∫ +∞
0

∫ +∞
max(g(s1,s2)−t1,0)

(t1 + t2)
− 1

θ
−2 dt1 dt2 = 1 + θ

θ
g(s1, s2)

− 1
θ .

Then, with the same change of variable, the bound can be rewritten as

2α
1 + θ

θ2

∫ ∞
0

∫ ∞
0

∣∣∣∣E−1
1

(
x

− 1
θ

1

) − E−1
1

(
1 + θ

θ
(x1 + x2)

− 1
θ

)∣∣∣∣2(x1 + x2)
− 1

θ
−2 dx1 dx2

= 2α
1 + θ

θ2

∫ ∞
0

∫ ∞
y1

∣∣∣∣E−1
1

(
y

− 1
θ

1

) − E−1
1

(
1 + θ

θ
y

− 1
θ

2

)∣∣∣∣2y− 1
θ
−2

2 dy1 dy2.

We expand the binomial and treat the three terms separately:∫ ∞
0

∫ ∞
y1

E−1
1

(
y

− 1
θ

1

)2
y

− 1
θ
−2

2 dy1 dy2 = θ2

1 + θ

∫ +∞
0

E−1
1 (x)2 dx = θ2

1 + θ
.

Similarly,

∫ ∞
0

∫ ∞
y1

E−1
1

(
1 + θ

θ
y

− 1
θ

2

)2
y

− 1
θ
−2

2 dy1 dy2 = θ2

1 + θ
.

Thus dW(μ̃, μ̃co)2 ≤ 4c. In order to conclude it suffices to show that

lim
θ→+∞

1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y

− 1
θ

1

)
E−1

1

(
1 + θ

θ
y

− 1
θ

2

)
y

− 1
θ
−2

2 dy1 dy2 = 1.
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Since for every a, b ∈ R, (a − b)2 ≥ 0, the integral is smaller or equal to 1. Thus it is enough
to prove it to be greater or equal to 1. We observe that since y1 ≤ y2,

1 + θ

θ
y

− 1
θ

2 ≤ 1 + θ

θ
y

− 1
θ

1 .

Since E1 is a decreasing function, so is its inverse. Thus

1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y

− 1
θ

1

)
E−1

1

(
1 + θ

θ
y

− 1
θ

2

)
y

− 1
θ
−2

2 dy1 dy2

≥ 1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y

− 1
θ

1

)
E−1

1

(
1 + θ

θ
y

− 1
θ

1

)
y

− 1
θ
−2

2 dy1 dy2

= 1

θ

∫ ∞
0

E−1
1

(
y

− 1
θ

1

)
E−1

1

(
1 + θ

θ
y

− 1
θ

1

)
y

− 1
θ
−1

1 dy1

= θ

1 + θ

∫ ∞
0

E−1
1

(
θ

1 + θ
x

)
E−1

1 (x) dx

≥ θ

1 + θ

∫ ∞
0

E−1
1 (x)2 dx = θ

1 + θ
,

which by taking the limit as θ → +∞ is equal to 1.

9.13. Proof of Proposition 15. We point out that ξ̃
d= μ̃ind + μ̃co

0 and ξ̃
co d= μ̃co + μ̃co

0 .
Since by construction μ̃ind ⊥ μ̃co

0 and μ̃co ⊥ μ̃co
0 , by (23),

W
(
ξ̃(A), ξ̃

co
(A)

) ≤ W
(
μ̃ind(A), μ̃co(A)

) +W
(
μ̃co

0 (A), μ̃co
0 (A)

)
,

which is equal to W(μ̃ind(A), μ̃co(A)). By taking the supremum over A ∈ X we achieve
the first statement. A very similar proof can be carried on for the second, by observing that

ξ̃
ind d= μ̃ind + μ̃ind

0 .

9.14. Proof of Lemma 17. Let {A1, . . .An} in X be disjoint sets. Then for i = 1, . . . , n

the random vectors μ̃f (Ai) = ∫
Ai

f (x)μ̃(dx) are independent since f is deterministic and
μ̃(A1), . . . μ̃(An) are independent. This proves that μ̃f is a CRV. The Lévy intensity νf may
be found through the joint Laplace functional transform, E(e− ∫

g1(x)μ̃1(dx)−∫
g2(x)μ̃2(dx)) for

every pair of measurable functions g1, g2 : X → R
+, which characterizes the law of a CRV

μ̃ = (μ̃1, μ̃2):

E
(
e− ∫

X
g1(x)μ̃f,1(dx)−∫

X
g2(x)μ̃f,2(dx))

= exp
{
−

∫
R

2+×X

[
1 − e−(s1g1(x)−s2g2(x))f (x)]ν(ds1, ds2, dx)

}

= exp
{
−

∫
R

2+×X

[
1 − e−s1g1(x)−s2g2(x)](pf #ν)(ds1, ds2, dx)

}
,

where pf (s1, s2, x) = (s1f (x), s2f (x), x).

9.15. Proof of Proposition 18. Denote μ̃t = μ̃k(t |·) in the notation of Lemma 17, so that

h̃(t)
d= μ̃t (R). By definition of GM-dependence, μ̃t (dy) = k(t |y)μ̃ind(dy) + k(t |y)μ̃co

0 (dy).
If k(t |x) = β1[0,t](x) and μ̃ is a gamma CRM, by [4], Lemma 6 and Example 3, k(t |x)μ̃(dx)

has Lévy measure

π(ds, dx) = e
− s

β

s
1(0,+∞)(s)1(0,t)(x) ds,
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which corresponds to the generalized gamma CRM with parameters b = β−1, σ = 0, α = t

and P0 = Unif([0, t]). Thus, μ̃t is a special case of GM-dependent CRV with generalized
gamma marginals. We conclude by Corollary 16.
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