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Abstract Random vectors of measures are at the core of many recent developments
in Bayesian nonparametrics. For a deep understanding of these infinite-dimensional
discrete random structures and their impact on the inferential and theoretical
properties of the induced models, we consider a class of transport distances based
on theWasserstein distance. The geometrical definition makes it ideal for measuring
similarity between distributions with possibly different supports. Moreover, when
applied to random vectors of measures with independent increments (completely
random vectors), the interesting theoretical properties are coupled with analytical
tractability. This leads to a new measure of dependence for completely random
vectors and the quantification of the impact of hyperparameters in notable models
for exchangeable time-to-event data.

Keywords Bayesian nonparametrics · Completely random measures ·
Completely random vectors · Compound Poisson approximation · Dependence ·
Lévy copula · Partial exchangeability · Wasserstein distance

1 Introduction

Many notable Bayesian nonparametric models allow to make inference for partially
exchangeable sequences. Thanks to de Finetti’s representation theorem, the law of
any such sequence may be specified in terms of a random vector of probabilities
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(P̃1, . . . , P̃m). Let (Xi,j )j≥1, with i = 1, . . . ,m, be a partially exchangeable
sequence on X. Then,

(Xi1,j1, . . . , Xik,jk )|(P̃1, . . . ., P̃m) ∼ P̃i1 × · · · × P̃ik ; (P̃1, . . . , P̃m) ∼ Q;

for any k ≥ 1, i� ∈ {1, . . . ,m}, j� ∈ N \ {0} such that (i�, j�) �= (i�′, j�′),
for � �= �′ = 1, . . . , k. When m = 1 or P̃1 = · · · = P̃m almost surely
(a.s.), the model degenerates to exchangeability, which can thus be seen as a
special case. There have been many proposals on how to specify the law Q by
modeling the dependence structure between random probabilities [21]. Among the
most successful specifications, many build on random vectors of measures with
independent increments (μ̃1, . . . , μ̃m), which we denote as completely random
vectors (CRVs) in analogy with the one-dimensional case of completely random
measures (CRMs). Completely random vectors have appealing properties in terms
of analytical tractability, typically because of the existence of a multivariate Lévy
intensity that characterizes their distribution. For this reason, many random vectors
of probabilities may be derived from suitable transformation of CRVs, including
normalization [22], kernel mixtures for densities [9, 18] and hazards [7] and
exponential transformation for survival functions [6].

The derived nonparametric models for partially exchangeable sequences [8,
10, 15–17, 23] are very flexible but often difficult to interpret, making the prior
elicitation more demanding. In order to ease the interpretation and foremost the
comparison between different models, we introduce a distance between CRVs,
based on the Wasserstein distance. The relationship between the Wasserstein
distance and optimal transport theory [25] sheds light on its intrinsically geometric
definition. This makes the Wasserstein distance an ideal measure of discrepancy
between distributions with possibly different support, in contrast to other com-
mon choices, such as the total variation distance, the Hellinger distance and the
Kullback–Leibler divergence.

To date the transport distance between CRVs has been used in two different
scenarios: to create a new measure of dependence for partially exchangeablemodels
[3] and to measure the discrepancy between hazard rates models for exchangeable
observations [2]. The dependence between random measures regulates the
borrowing of information between different groups of observations with a major
impact on the posterior inference. In order to elicit the prior, one needs a measure
of dependence that can be expressed in terms of the hyperparameters of the model.
State-of-the-art measures typically consist in linear correlation, thus capturing only
a portion of the dependence structure. By leveraging the transport distance between
CRVs, Catalano et al. [3] propose a new measure of dependence that goes beyond
linear correlation. On the other hand, the transport distance between CRMs, i.e.
one-dimensional CRVs, has been fruitfully used in the context of survival analysis.
One of the most popular Bayesian nonparametric models for time-to-event data [7]
represents the hazard rate function as a kernel mixture over a CRM. For a careful
prior elicitation, Catalano et al. [2] find the analytical expression for the Wasserstein
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distance between the hazards, as the hyperparameters of the CRMs and the kernels
vary. When treating the kernel of [7], i.e. k(t|x) = β(x)1(0,t ], calculations are
performed only for constant β(x) = β > 0, which is often used in applications.
This assumption implies that the index of dispersion of the induced hazard h̃(t) is
constant in time, which is often too restrictive. We thus consider the case where
β(x) increases linearly and compare it to the constant scenario. We find informative
bounds on the Wasserstein distance between these two specifications that show how
the distance increases quadratically in time.

The work is structured as follows. In Sect. 2 we introduce completely random
vectors and in Sect. 3 we define a class of transport distances on them. In Sect. 4
we describe how these distances may be used to define a measure of dependence,
reviewing the recent results of [3], whereas in Sect. 5 we focus on its applications in
survival analysis, following [2]. New results on time-varying kernels are contained
in Sect. 6.

2 Completely Random Vectors

In this section we recall the definition of completely random vectors and their main
properties. Let X be a Polish space with Borel σ -algebra X . We denote by MX the
space of boundedly finite measures on X, endowed with the weak� topology [5] and
the corresponding Borel σ -algebra. An m-dimensional random vector of measures
is a measurable function µ̃ : � → Mm

X
, where (�,�,P) is some probability

space and Mm
X

= ∏m
i=1 MX denotes the m-fold product space with corresponding

product topology and induced Borel σ -algebra. Let πi : Mm
X

→ MX be the i-th
projection, i.e. πi(μ1, . . . , μm) = μi , for i = 1, . . . ,m. We denote the marginal
random measures μ̃i = πi ◦ µ̃ : � → MX, so that µ̃ = (μ̃1, . . . , μ̃m).

Definition 2.1 A random vector of measures µ̃ is said to be a completely random
vector (CRV) if for every disjoint collection of bounded Borel sets A1, . . . , An, the
one-dimensional distributions µ̃(A1), . . . , µ̃(An) are independent.

We observe that for i = 1, . . . ,m, the marginal random measure μ̃i of a CRV µ̃

is a completely random measure (CRM) in the sense of [14]. Thus, we can look at
CRVs µ̃ = (μ̃1, . . . , μ̃m) as vectors of dependent CRMs. This property makes them
particularly appealing, since dependent CRMs offer the ground for most tractable
nonparametric priors in presence of multiple populations.

We focus on CRVs without fixed atoms. Thanks to [13, Theorem 3.19], this
ensures the existence of a Poisson random measure N on R

m+ × X s.t. for every
A ∈ X ,

µ̃(A)
d=

∫

R
m+×A

sN (ds1, . . . , dsm, dx), (2.1)



62 M. Catalano et al.

where
d= denotes equality in distribution and s = (s1, . . . , sm). It follows that

the distribution of a CRV µ̃ is characterized by a multivariate Lévy intensity
ν(ds1, . . . , dsm, dx) = E(N (ds1, . . . , dsm, dx)) such that (1) ν(Rm+ × {x}) = 0
for every x ∈ X; (2) for every bounded A ∈ X and every ε > 0,

∫

R
m+×A

min{s1 + · · · + sm, ε} ν(ds1, . . . , dsm, dx) < +∞. (2.2)

We will focus on infinitely active CRVs, i.e. such that for every Borel set A, the
Lévy measures of the marginal CRMs satisfy

∫

R+×A

νi(dsi, dx) =
∫

R
m+×A

ν(ds1, . . . , dsm, dx) = +∞. (2.3)

In the next section we define a class of distances between laws of CRVs, whose
analytical tractability heavily relies on the existence of multivariate Lévy intensities.

3 Transport Distances

In this section we define a class of transport distances on CRVs. These are built on
the Wasserstein distance [25], whose geometric definition makes it an ideal choice
for measuring the similarity between distributions.

Let ‖ · ‖m denote the Euclidean distance on R
m and let N+ = N \ {0}. For any

pair π1, π2 of probability measures on (Rm, ‖ · ‖m), we indicate by C(π1, π2) the
Fréchet class of π1 and π2, i.e. the set of distributions (couplings) on the product
space R2m whose marginal distributions coincide with π1 and π2 respectively.

Definition 3.1 TheWasserstein distance of order p ∈ N
+ on (Rm, ‖·‖m) is defined

as

Wp(π1, π2) = inf
(Z1,Z2)∈C(π1,π2)

{
E(‖Z1 − Z2‖p

m)
} 1

p .

By extension, we refer to the Wasserstein distance between two random vectors
X1,X2 on R

m as the Wasserstein distance between their laws, i.e. Wp(X1,X2) =
Wp(L(X1),L(X2)).

In the next proposition we show how the Wasserstein distance may be used to
define a distance between CRVs in a natural way. The proof is a straightforward
generalization of results in [3]. Before providing the main statement, we underline
that a CRV has finite moments up to order p ∈ N

+ if for every � ∈ {1, . . . , p},
∫

R
m+×X

s� ν(ds1, . . . , dsm, dx) < +∞, (3.1)
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where s� = (s�
1, . . . , s

�
m) and +∞ = (+∞, · · · ,+∞). Denote by Pp(Mm

X
) =

{L(µ̃) s.t. µ̃ is a CRV that satisfies (3.1)}.
Proposition 3.2 For every p ∈ N

+, the following function dW,p : Pp(Mm
X

) ×
Pp(Mm

X
) → [0,+∞) defines a distance:

dW,p(L(µ̃1),L(µ̃2)) = sup
A∈X

Wp(µ̃1(A), µ̃2(A)). (3.2)

By extension, we refer to the distance dW,p between CRVs as the distance
between their laws. The natural definition of dW,p is often coupled with analytical
tractability, as shown in [2] and [3], which makes it particularly attractive in a
number of statistical applications. In particular, in [2], dW,1 was used in the one-
dimensional scenario, i.e. between the laws of completely random measures, to
measure the discrepancy between Bayesian nonparametric models for exchangeable
time-to-event data. On the other hand, in [3], dW,2 was used to measure the
dependence structure of a CRV.

4 Measuring Dependence in Bayesian Nonparametrics

In the last 20 years Bayesian nonparametricmodels have gone beyond the exchange-
ability assumption through the introduction of dependent random measures, which
provide a flexible framework for modeling the heterogeneity across multiple
populations. The prior dependence between random measures regulates the bor-
rowing of strength across different populations and thus needs a careful elicitation.
The current state-of-the-art is to provide the analytical expression for the linear
correlation Corr(μ̃1(A), μ̃2(A)), which only captures partial information about
the dependence structure. In [3] the authors propose to use the distance defined
in Proposition 3.2 to compare different dependence structures between CRVs with
equal marginal distributions, i.e. in the same Fréchet class. In particular, one may
define an overall measure of dependence of µ̃ by considering its distance from the
maximally dependent CRV in the same Fréchet class, usually referred to as the
comonotonic vector µ̃co:

Dep(µ̃) = dW,2(µ̃, µ̃co) (4.1)

The goal is to find tight bounds for Dep(µ̃) in terms of the hyperparameters of
the model, in order to quantify their impact on the dependence structure for a
principled prior elicitation. This is achieved in [3] by (1) using compound Poisson
approximations; (2) finding a new upper bound on theWasserstein distance between
bivariate compound Poisson distributions; (3) finding the expression for the optimal
coupling between a distribution on R

2 and the comonotonic one in the same
Fréchet class. In particular, one finds tight upper bounds for Dep(µ̃) in terms
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of the underlying bivariate Lévy measures. This allows to treat many noteworthy
dependence structures, such as GM-dependence [11, 16, 17], compound random
measures [10, 23] and Clayton Lévy copulae [4, 8, 15, 24].

5 Survival Analysis in Bayesian Nonparametrics

Completely random measures play a particularly important role in Bayesian non-
parametric models for time-to-event data. Here the main quantities of interest
are typically the survival function, cumulative hazards and the hazard function.
Consequently, the most notable Bayesian nonparametric models in survival analysis
and reliability theory provide closed form estimates of these functions, in terms of
underlying CRMs. Among the models for the hazard function, the one proposed by
Dykstra and Laud [7] stands out for combining both flexibility and tractability. The
random hazard function h̃ is modeled as a kernel mixture over a CRM:

h̃(t) =
∫

X

k(t|x) μ̃(dx), (5.1)

where t ∈ R
+, k : X×R

+ → R
+ is a measurable kernel and μ̃ is a CRM on X with

Lévy intensity ν. The original model in [7] was defined for k(t|x) = β(x)1(0,t ](x),
where β : R+ → R

+ is a measurable function, and μ̃ a gamma CRM, i.e. such that
the Lévy intensity satisfies

ν(ds, dx) = e−bs

s
1(0,+∞)(s) ds α(dx), (5.2)

for b > 0 and α ∈ MX. We write μ̃ ∼ Ga(b, α). The extension to a general
kernel was proposed in [19]. Later work by James [12] also extended this model to
a general CRM.

The hazard model (5.1) is very flexible and incorporates a wide variety of
distributional assumptions. On the other hand, it is not easy to understand how
the parameters of the CRM and the kernel function impact the distribution of the
random hazard. For a careful prior elicitation and sensitivity analysis, a principled
quantification of the discrepancy at the level of the hazards is of fundamental need.
We choose the Wasserstein distance of order 1 as a measure of discrepancy and we
seek for an analytical expression of

sup
t∈[0,T ]

W1(h̃1(t), h̃2(t)) (5.3)

where T > 0 and h̃1, h̃2 are two different specifications for (5.1). We point out that
[0, T ] may be interpreted as a time interval of interest, typically coinciding with the
start and the end of the study. The analytical evaluation of a distance is a difficult task
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in general, evenmore so since the law of the random variable in (5.1) is defined in an
indirect way through the Lévy measure of the mixing CRM. Nonetheless, in [2] the
authors were able to find informative bounds on the distance in (3.2) in terms of the
corresponding Lévy measures by (1) leveraging compound Poisson approximations
of the completely randommeasures; (2) bounding the Wasserstein distance between
compound Poisson distributions, as first suggested by Mariucci and Reiß [20] in the
context of Lévy processes. Then, the deep connections between (5.3) and (3.2) lead
to the following theorem, whose proof may be found in [2]. Before providing the
main statement, we stress two conditions on the kernels.

lim
t→∞

∫ t

0

∫

R+×X

k(u | x) s duN (ds, dx) = +∞, (5.4)

∫

R+×X

k(t|x) s ν(ds, dx) < +∞. (5.5)

Theorem 5.1 Let h̃1 = {h̃1(t) | t ≥ 0} and h̃2 = {h̃2(t) | t ≥ 0} be random hazard
rates as in (5.1) with associated infinitely active CRMs μ̃i , Lévy intensity νi , and
kernel ki that satisfy (5.4) and (5.5), for i = 1, 2. Then the Wasserstein distance
between the marginal hazard rates is finite and for every t ≥ 0,

glow(t) ≤ W1(h̃1(t), h̃2(t)) ≤ gup(t),

where

glow(t) =
∣
∣
∣
∣

∫

R+×X

k1(t |x) s ν1(ds, dx) −
∫

R+×X

k2(t |x) s ν2(ds, dx)

∣
∣
∣
∣,

gup(t) =
∫ +∞

0

∣
∣
∣
∣

∫

(u,+∞)×X

1

k1(t | x)
ν1

(
d

s

k1(t | x)
, dx

)

− 1

k2(t | x)
ν2

(
d

s

k2(t | x)
, dx

)∣
∣
∣
∣ du.

In particular if there exists a dominating measure η such that the Radon–Nikodym
derivatives νi(s, x) satisfy, for i �= j in {1, 2},

1

ki(t|x)
νi

( s

ki(t|x)
, x

)
≤ 1

kj (t|x)
νj

( s

kj (t|x)
, x

)
(5.6)

for all (s, x) ∈ R
+ × X, then

W1(h̃1(t), h̃2(t)) =
∣
∣
∣
∣

∫

R+×X

k1(t|x) s ν1(ds, dx) −
∫

R+×X

k2(t|x) s ν2(ds, dx)

∣
∣
∣
∣.
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Theorem 5.1 was used in [2] to measure the discrepancy between hazards with
kernels of the type of [7], i.e. k(t|x) = β(x)1[0,t ](x), which is a popular choice
when modeling increasing hazards, in the particular case where β(x) = β is a
constant function. This specification is very common in applications and brings to
the following measurement of discrepancy, whose proof may be found in [2]. We
denote by Leb+ the Lebesgue measure on (0,+∞).

Theorem 5.2 Let μ̃i ∼ Ga(bi,Leb+) as defined in (5.2) and let ki(t|x) =
βi1[0,t ](x), with bi, βi > 0, for i = 1, 2. If h̃1 and h̃2 are the corresponding hazard
rate mixtures, then

W1(h̃1(t), h̃2(t)) = t

∣
∣
∣
∣
β1

b1
− β2

b2

∣
∣
∣
∣.

6 Time-Dependent Kernels

In this section we make some progress in the understanding of the distributional
implications of the hazard rate model in (5.1) when μ̃ ∼ Ga(b,Leb+) as defined
in (5.2). In particular, the goal is to understand the impact of using a kernel of the
type of [7] when the time influences also the functional form of the kernel and not
only the support, i.e. β(·) is not constant in (0, t]. This scenario is of particular
importance when we judge that the index of dispersion varies in time, since when
β(x) = β > 0,

Var(h̃(t))

E(h̃(t))
= β

b
.

We thus consider the scenario where β(x) = β + γ x, with β, γ > 0.

Theorem 6.1 Let μ̃i ∼ Ga(bi,Leb+) as defined in (5.2) and let k1(t|x) =
β1[0,t ](x) and k2(t|x) = (β + γ x)1[0,t ](x), with b1, b2, β, γ > 0. If h̃1 and h̃2
are the corresponding hazard rate mixtures, then

1. If b1 ≥ b2,

W1(h̃1(t), h̃2(t)) =
(
1

b2
− 1

b1

)

βt + γ

2b2
t2.

2. If b1 ≤ b2 and t ≤ β(b2 − b1)/(b1γ )

W1(h̃1(t), h̃2(t)) =
(
1

b1
− 1

b2

)

βt − γ

2b2
t2.

3. Otherwise,

glow(t) ≤ W1(h̃1(t), h̃2(t)) ≤ gup(t),
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where

glow(t) =
(

1

b2
− 1

b1

)

βt + γ

2b2
t2

gup(t) =
(

1

b2
− 1

b1

)2
β2b2

γ
+

(
1

b2
− 1

b1

)

βt + γ

2b2
t2

Proof First of all we observe that

νk,1(ds, dx) = 1

k1(t|x)
ν1

(
d

s

k1(t|x)
dx

)
= e

− s b1
β

s
1(0,+∞)(s)1[0,t ](x) ds dx,

νk,2(ds, dx) = 1

k2(t | x)
ν2

(
d

s

k2(t|x)
dx

)
= e

− s b2
β+γ x

s
1(0,+∞)(s)1[0,t ](x) ds dx.

Since γ > 0, (5.6) holds whenever b1 ≥ b2. Part 1 of the statement thus holds by
Theorem 5.1, by observing that

∫

R+×R

k2(t | x) s ν2(ds, dx) = β

b2
t + γ

2b2
t2.

As for part 2 of the statement, it suffices to prove the expression for the upper bound.
With a slight abuse of notation, indicate by νk,i(s, x) the Radon–Nikodymderivative
of νk,i(ds, dx), for i = 1, 2. We observe that νk,1(s, x) ≤ νk,2(s, x) for every s > 0
and every t ≥ y ≥ β(b2 − b1)/(b1γ ), so that the Radon–Nikodym derivatives are
not globally ordered. We denote by δ = min(β(b2 − b1)/(b1γ ), t). We then have

∫ +∞

0

∣
∣
∣
∣

∫

(u,+∞)×R

(νk,1(s, x) − νk,2(s, x)) ds dx

∣
∣
∣
∣ du

≤
∫ +∞

0

∫

(u,+∞)

∫

R

|νk,1(s, x) − νk,2(s, x)| dx ds du.

By interchanging the integrals thanks to Fubini’s Theorem, this is equal to

∫ +∞

0

∫

R

( ∫ s

0
du

)

|νk,1(s, x) − νk,2(s, x)| dx ds

=
∫ +∞

0

∫

R

|sνk,1(s, x) − sνk,2(s, x)| dx ds

=
∫ +∞

0

( ∫ δ

0
(e

− s b1
β − e

− s b2
β+γ x ) dx +

∫ t

δ

(e
− s b2

β+γ x − e
− s b1

β ) dx

)

ds
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=
∫ δ

0

(
β

b1
− β + γ x

b2

)

dx +
∫ t

δ

(
β + γ x

b2
− β

b1

)

dx.

The conclusion follows by simple calculations. �

Theorem 6.1 allows one to measure the impact of introducing a time dependent

function in the kernel of [7]. In particular, we underline how the discrepancy grows
quadratically in time, thus greatly influencing our prior opinion on the process
for large t . Moreover, as t → +∞ we observe that the upper and lower bounds
are asymptotically equivalent, providing the exact leading term for the Wasserstein
distance.

7 Discussion and Further Work

In this paper we have discussed two different frameworks where transport distances
between random vectors of measures provide deeper insights on notable Bayesian
nonparametric models, favoring the elicitation of the prior. The amount of depen-
dence in partially exchangeable models regulates the borrowing of information
across groups, with a large impact on the inference. It is thus of fundamental
importance to translate our prior beliefs on the dependence structure into the spec-
ification of the prior. Since exchangeability corresponds to a situation of maximal
dependence, it seems natural to encode the prior beliefs on the dependence structure
in terms of distance from the exchangeable scenario, as in (4.1). By choosing a
subjective threshold τ for such distance, the tight upper bounds found in [3] may be
set to be equal to τ by choosing appropriate values of the hyperparameters of the
model. Moreover, Theorem 6.1 may be used for the prior elicitation of hazard rate
models as in (5.1). The kernel k(t|x) = β1[0,t ](x) with β > 0 is the most common
specification in applications involving increasing hazard rates and may be treated as
a reference kernel. However, if one believes that the index of dispersion varies over
the time interval of interest (0, t∗], it is natural to use a time varying specification
as k(t|x) = (β + γ x)1[0,t ](x), though securing a certain degree of similarity with
respect to the reference kernel for every t ∈ (0, t∗]. By measuring the similarity in
terms of Wasserstein distance and fixing a subjective threshold τ , the exact value of
the distance or its upper bound in Theorem 6.1 is maximized in t∗. One can then set
the upper bound at time t∗ equal to τ , so that the hyperparameter γ may be chosen
and elicited accordingly.

Completely random measures are widely used because they combine modeling
flexibility with analytical tractability. In particular, there are many closed form
results for the posterior distribution of the random measures given exchangeable
or partially exchangeable observations. These have been used for example in [2]
to evaluate approximation errors of a posterior sampling scheme in terms of the
Wasserstein distance. Future research will concern the analysis of the dependence
structure of the posterior distribution µ̃∗ through Dep(µ̃∗) in (4.1). The plan would
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then be to use this to test whether the data supports the heterogeneity assumption
across groups, along the lines of the parametric tests developed in [1].
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