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Abstract

The proposal and study of dependent Bayesian nonparametric models has been one
of the most active research lines in the last two decades, with random vectors of measures
representing a natural and popular tool to define them. Nonetheless a principled approach to
understand and quantify the associated dependence structure is still missing. In this work we
devise a general, and non model-specific, framework to achieve this task for random measure
based models, which consists in: (a) quantify dependence of a random vector of probabilities
in terms of closeness to exchangeability, which corresponds to the maximally dependent
coupling with the same marginal distributions, i.e. the comonotonic vector; (b) recast the
problem in terms of the underlying random measures (in the same Fréchet class) and quantify
the closeness to comonotonicity; (c) define a distance based on the Wasserstein metric, which
is ideally suited for spaces of measures, to measure the dependence in a principled way.
Several results, which represent the very first in the area, are obtained. In particular, useful
bounds in terms of the underlying Lévy intensities are derived relying on compound Poisson
approximations. These are then specialized to popular models in the Bayesian literature
leading to interesting insights.

1 Introduction

A sequence of random elements (Xn)n≥1 is exchangeable when its distribution is invariant with
respect to finite permutations of the indices. By de Finetti’s Representation Theorem this
intuitive symmetry requirement is equivalent to the finite–dimensional distributions being con-
ditionally independent and identically distributed. When the random elements are grouped in
a finite number of blocks, partial exchangeability (de Finetti, 1938) is a natural generalization
that amounts to assuming the invariance of their joint distribution with respect to finite permu-
tations within each block. The corresponding representation theorem states that for partially
exchangeable sequences {X1,j | j ≥ 1}, . . . , {Xk,j | j ≥ 1} on a Polish space X there exists a
random vector of probability measures (p̃1, . . . , p̃k) ∼ Q s.t. for any ni ∈ N and any Borel sets
Ai ⊂ Xni , for i = 1, . . . , k,

P
( k⋂

i=1

{(Xi,1, · · · , Xi,ni) ∈ Ai}
)

=

∫
PkX

k∏
i=1

p
(ni)
i (Ai)Q(dp1, . . . , dpk).

In particular, exchangeability is recovered when p̃1 = · · · = p̃k almost surely (a.s.).
In Bayesian nonparametric inference, the random elements {X1,j | j ≥ 1}, . . . , {Xk,j | j ≥ 1}
are regarded as observables and a fundamental issue is the choice of the distribution Q for
the random vector of probability measures (p̃1, . . . , p̃k), the prior distribution. The dependence
between the random probabilities is of crucial importance, since it regulates the dependence
between groups of observations and, consequently, the borrowing of information across groups.
The first proposal of a dependent nonparametric prior dates back to Cifarelli & Regazzini (1978),
but it was the two seminal papers of MacEachern (1999, 2000) which led to an impressive growth
of research in this direction. Most classes of priors are defined to select a.s. discrete p̃i’s, since
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this naturally allows for clustering at either the observations’ or latent level. This is true also in
the exchangeable case: an a.s. discrete p̃ is obtained through either the stick–breaking construc-
tion (Sethuraman, 1994; Ishwaran & James, 2001) or a suitable transformation of a completely
random measure (CRM) µ̃ (Kingman, 1967; Lijoi & Prünster, 2010). The former approach is
particularly effective for computational purposes, whereas the latter allows to derive important
distributional properties. In particular, by using CRMs as a unifying concept, as showcased
in (Lijoi & Prünster, 2010), one obtains popular classes of nonparametric priors such as, e.g.,
normalized random measures (Regazzini et al., 2003), neutral-to-the-right processes (Doksum,
1974) and kernel mixtures of random measures (Dykstra & Laud, 1981; James, 2005). Corre-
spondingly, in the general partially exchangeable case, one may distinguish two approaches for
building dependent priors: the first approach models the dependence at the level of the atoms
and/or the jumps of the stick–breaking construction of each p̃i; the second models the depen-
dence at the level of the CRMs (µ̃1, . . . , µ̃k) to then obtain a dependent vector (p̃1, . . . , p̃k) via
a suitable transformation. See (Hjort et al., 2010; Müller et al., 2015; Ghosal & van der Vaart,
2017; Müller et al., 2018) for extensive accounts. A crucial gap in this vast literature is the
understanding and quantification of the dependence structure of a dependent nonparametric
prior in order to both elicit prior parameters to achieve the desired degree of dependence and
compare different priors themselves. The most natural way to approach the problem is to mea-
sure closeness to exchangeability, which corresponds to the extreme case of maximal dependence
between populations. Within a parametric framework, already in 1938, de Finetti proposed to
use approximately exchangeable priors to deal with contingency tables (de Finetti, 1938). Re-
cently, Bacallado et al. (2015) enriched this class of examples and proposed ways to use them
to test for the exchangeability assumption. However, closeness to exchangeability is left as an
essentially intuitive notion. To the best of our knowledge, the only measure of dependence that
has been used so far is the pairwise linear correlation of (p̃i(A), p̃j(A)), for any given set A, which
is certainly useful but reducing dependencies between random probabilities to linear correlation
is hardly satisfying.
Here, we tackle the problem in a general nonparametric framework adopting a principled ap-
proach in that we measure the distance to exchangeability in terms of the Wasserstein distance.
Because of its intrinsically geometric definition, the Wasserstein distance is the most appropriate
choice for describing the similarity between distributions. As explained in (Rachev, 1985), this
distance was first introduced by Gini (1914) with this exact scope. During the past century the
Wasserstein distance was introduced and studied in many fields of research, including Optimal
Transport Theory, Partial Differential Equations and Ergodic Theory. Recently, it has gained
a renewed popularity in Probability, Statistics and the related fields of Machine Learning and
Optimization, where the distinguished theoretical properties are now supported by efficient al-
gorithms (Cuturi, 2013). See (Villani, 2008; Panaretos & Zemel, 2019) for detailed reviews. The
first to use the Wasserstein distance in a Bayesian nonparametric framework, for asymptotic
investigations, has been Nguyen (2013) who has convincingly argued for it as an effective tool
to handle discrete nonparametric priors. See also (Nguyen, 2016). From our perspective, the
Wasserstein distance is the ideal choice because it allows for a meaningful comparison between
distributions with different support and without density, as the ones arising from transforma-
tions of CRMs. This property is not shared by the most common distances and divergences,
such as the total variation distance, the Hellinger distance or the Kullback–Leibler divergence.
Our general setup is as follows. For simplicity, we consider the case k = 2, even though most of
our results may be extended to a generic k with no additional cost. Since our leading purpose
is to measure the closeness to exchangeability (i.e. p̃1 = p̃2 a.s), we consider random vectors

(p̃1, p̃2) with equal marginal distributions (p̃1
d
= p̃2). A crucial observation is then the follow-

ing: instead of measuring the distance from exchangeability of (p̃1, p̃2), we work with completely
random vectors (CRVs) (µ̃1, µ̃2), characterized by jointly independent increments, and measure
their closeness to the comonotonic case i.e. µ̃1 = µ̃2 a.s. In fact, since most random vectors of

2



discrete probabilities (p̃1, p̃2) are obtained by a suitable component–wise transformation T of a
CRV, (T (µ̃1), T (µ̃2)) (see (Lijoi & Prünster, 2010) for details), comonotonic CRVs correspond
to exchangeability. Working directly with the random measures rather than their transformed
versions has two distinct advantages: (a) it provides a generic and non-model specific framework
for the analysis of dependence, which can then be tailored to the particular class of models one
is interested in, as we do in Section 7; (b) it significantly simplifies the mathematical analysis.
Closeness to the comonotonic case is then measured through the following distance on CRVs,
which will be shown in Section 2 to be well–defined,

dW

((
µ̃1

µ̃2

)
,

(
ξ̃1

ξ̃2

))
= sup

A∈X
W
((

µ̃1(A)
µ̃2(A)

)
,

(
ξ̃1(A)

ξ̃2(A)

))
, (1)

where W denotes the 2–Wasserstein distance on the Euclidean plane. The goal of this work is
then to provide an analytical expression for the distance dW in (1) with a particular focus on
the distance between a CRV (µ̃1, µ̃2) and the comonotonic random vector (ξ̃1, ξ̃2) in the same
Fréchet class, i.e. with the same marginal distributions. We stress that our results, even though
motivated by Bayesian nonparametric models, are of independent probabilistic interest with ref-
erence to the theory of multidimensional random measures and Lévy processes.
The two major challenges in the treatment of dW in (1) may be summarized as follows. (i) The
analytical computation of the Wasserstein distance needs the appointment of an optimal trans-
port map. While these are always known in explicit form for univariate distributions, the general
expression for multidimensional ones is still an open problem, with only a few known cases. Cru-
cially, in Theorem 2 we are able to determine the optimal transport map to the comonotonic
vector for any CRV (µ̃1, µ̃2). This allows to express the Wasserstein distance as an integral that
involves the cumulative distribution function (cdf) of µ̃1(A) + µ̃2(A), which in some cases may
be computed directly, an example being when one considers the Wasserstein distance between
comonotonicity and independence. (ii) The law of a CRV is usually characterized through a
bivariate Lévy measure, so that the cdf of µ̃1(A) + µ̃2(A) is not available in closed form. Hence,
Theorem 5 is of particular importance, since we are able to find tight bounds of the distance
that are expressed in terms of the Lévy measures. This is achieved through suitable compound
Poisson approximations of the random vectors and by finding a new informative bound for the
Wassserstein distance between multivariate compound Poisson distributions (Proposition 6).
With the aim of emphasizing their role in Bayesian nonparametric inference, we then compute
the bounds for dW for instances of (µ̃1, µ̃2) that correspond to well–known priors with partially
exchangeable data, leading to meaningful insights and a quantification of their dependence struc-
ture in terms of the hyperparameters.
Our measure of dependence may be naturally extended to k > 2 groups by considering the
Wasserstein distance on Rk from (µ̃1(A), . . . , µ̃k(A)) such that µ̃1(A) = · · · = µ̃k(A) a.s., i.e. the
comonotonic k-dimensional CRV corresponding to exchangeability. The main techniques still
apply to the k–dimensional case. The focus on k = 2 is only for the sake of simplicity. We
underline that the natural extension to an arbitrary k provides a further benefit of our measure
of dependence compared to linear correlation, since it provides an overall quantification of de-
pendence without forcing pairwise comparisons.
The techniques that we introduce may also be used to measure the dependence directly on
component-wise transformations (T (µ̃1), T (µ̃2)) of a CRV, which may be seen as a complemen-
tary model-specific analysis. However, this requires additional work and depends on the choice of
T , since the Wasserstein distance in not transformation invariant. Here we develop informative
bounds for a specific transformation that is widely used in Bayesian nonparametric inference
for time-to-event data, namely random hazards modeled as kernel mixtures over a CRM. Since
the hazards characterize the entire distribution, this provides a specification for the de Finetti
measure. The inferential properties of this class of nonparametric priors were thoroughly studied
in (Dykstra & Laud, 1981; Lo & Weng, 1989; James, 2005) for exchangeable observations and
have seen interesting generalizations to a partially exchangeable setting (Lijoi & Nipoti, 2014;
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Camerlenghi et al., 2020).

The paper is structured as follows. In Section 2 we introduce necessary concepts and notation
and prove that dW is actually a distance. In Section 3 we obtain an integral representation of the
Wasserstein distance between a random vector of measures and the corresponding comonotonic
one. In Section 4 we develop general bounds for the distance between CRVs in the same Fréchet
class, in terms of their bivariate Lévy intensities. In Section 5 we focus on the distance from
exchangeability and obtain an explicit form for the bounds of the previous section. In particular,
in Section 6 we use them to bound the distance between exchangeability and the other extreme
case, independence. In Section 7 the previous techniques are used to quantify the dependence of
three popular nonparametric priors for partially exchangeable data, namely compound random
measures (Griffin & Leisen, 2017; Riva-Palacio & Leisen, 2019), Clayton Lévy copula (Tankov,
2003; Epifani & Lijoi, 2010; Leisen & Lijoi, 2011) and GM–dependence (Griffiths & Milne, 1978;
Lijoi et al., 2014). In Section 8 we extend the measure of dependence to random hazards that
are modeled as kernel mixtures over a CRV, with a specific application to GM-dependence (Lijoi
& Nipoti, 2014). All proofs are deferred to Section 9.

2 Preliminaries

We first recall definitions and key properties of random vectors of measures and of the Wasser-
stein distance. To fix notation, let R+ = (0,+∞) and R2

+ := [0,+∞) × [0,+∞) \ {(0, 0)}.
Moreover, L(X) denotes the law of a random variable X and

d
= stands for equality in distribu-

tion.
Let (X, dX) be a Polish space endowed with a distance dX and the Borel σ-algebra X . We
denote by (MX,MX) the Borel space of boundedly finite measures on X endowed with the
topology of weak] convergence (Daley & Vere-Jones, 2002). A random vector of measures is a
measurable function µ̃ = (µ̃1, µ̃2) : Ω → M2

X, where (Ω,ΣΩ, PΩ) is a generic probability space
and M2

X = MX × MX is endowed with the product σ–algebra. We refer to the projections
πi ◦ µ̃ = µ̃i : Ω → MX, for i = 1, 2, as the marginals of µ̃. Moreover, the random vectors
evaluated on a set are denoted as µ̃(A) = (µ̃1(A), µ̃2(A)) : Ω → [0,+∞) × [0,+∞), for every
A ∈ X .

Definition 1. A random vector of measures µ̃ is a completely random vector (CRV) if, given a fi-
nite collection of disjoint bounded Borel sets {A1, · · · , An}, the random vectors {µ̃(A1), . . . , µ̃(An)}
are independent.

In particular, this definition entails that the marginal distributions µ̃1, µ̃2 have independent
increments and are thus completely random measures (CRMs) in the sense of Kingman (1967).
We point out that the converse is not necessarily true: a random vector of measures whose
marginals are CRMs is not necessarily a CRV. The joint independence of the increments guar-
antees that the distribution of µ̃ is characterized by the distribution of the random vectors
evaluated on a set {µ̃(A) |A ∈ X}. Moreover, (Kallenberg, 2017, Theorem 3.19) ensures that, if
µ̃ has no fixed atoms, there exists a Poisson random measure N on R2

+×X s.t. for every A ∈ X ,

µ̃(A)
d
=

∫
R2
+×A

sN (ds1, ds2, dx), (2)

where s = (s1, s2). The mean measure ν(ds1, ds2, dx) = E(N (ds1, ds2, dx)) satisfies the following
properties: ν(R2

+ × {x}) = 0 for every x ∈ X and∫
R2
+×A

min{s1 + s2, ε} ν(ds1, ds2, dx) < +∞ (3)
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for every bounded A ∈ X and every ε > 0. We will focus on CRVs without fixed atoms
and refer to ν as the intensity measure of µ̃. This will be further assumed to have no atoms.
Campbell’s Theorem ensures that from the Lévy intensity of µ̃ one derives the Lévy intensities
of the marginal CRMs µ̃1 and µ̃2, namely

ν1(ds, dx) =

∫
[0,+∞)

ν(ds, ds2, dx), ν2(ds, dx) =

∫
[0,+∞)

ν(ds1, ds, dx).

We underline that the marginal CRMs are not forced to have the same atoms a.s. because the
measure ν may have positive mass on the axes, as it will be clear from Section 6. We say that
µ̃ is infinitely active if for every A ∈ X both the marginal CRMs are infinitely active, i.e.∫

R+×A
ν1(ds, dx) =

∫
R+×A

ν2(ds, dx) = +∞. (4)

Since most applications of random measures in Bayesian nonparametrics deal with infinitely
active random measures, we concentrate on these.

The distribution of a CRV is characterized by the distribution of its evaluations on a set
{µ̃(A) |A ∈ X}. Thus any distance D on the space P (R2) of probability measures on R2

determines a distance on the laws of CRVs by considering

sup
A∈X

D(L(µ̃1(A)),L(µ̃2(A))).

The distance dW defined in (1) fits in this general framework, by considering the Wasserstein
distance as metric D. Given π1, π2 two probability measures on a Polish space (X, dX), we
indicate by C(π1, π2) the Fréchet class of π1 and π2, i.e. the set of distributions on the product
space whose marginal distributions coincide with π1 and π2 respectively. If Z1 and Z2 are
dependent random variables on X such that their joint law L(Z1, Z2) ∈ C(π1, π2), we write
(Z1, Z2) ∈ C(π1, π2).

Definition 2. The Wasserstein distance of order p ∈ [1,+∞) between π1 and π2 is

Wp,dX (π1, π2) = inf
(Z1,Z2)∈C(π1,π2)

{
E(dX(Z1, Z2)p)

} 1
p .

By extension, we refer to the Wasserstein distance between two random elements Xi : Ω→ X, i =
1, 2, as the Wasserstein distance between their laws, i.e. Wp,d (X1, X2) = Wp,d (L(X1),L(X2)).
An element of C(L(X1),L(X2)) is referred to as a coupling between X1 and X2.

Throughout the work we set p = 2 and (X, dX) = (R2, ‖·‖), i.e. the Euclidean plane. We will
refer to such distance as the Wasserstein distance and denote it by W, i.e.

W(X,Y ) = inf
(ZX ,ZY )∈C(X,Y )

{
E(‖ZX −ZY ‖2)

} 1
2 ,

where we have used the vector notation X = (X1, X2) ∈ R2. The parallelogram rule on normed
spaces ensures that

W(X,Y )2 ≤ 2 (E(‖X‖2) + E(‖Y ‖2)). (5)

In particular, the Wasserstein distance between random elements on R2 with finite expected
squared norm is finite. Thus, in order for dW in (1) to be finite, we restrict to random vectors of
measures with finite second moment E(‖µ̃(X)‖2) = E(µ̃1(X)2) + E(µ̃2(X)2) < +∞. Therefore,
by standard properties of Poisson random measures, we ask

E(µ̃(X)) =

∫
R2
+×X

s ν(ds1, ds2, dx) < +∞, (6)

Var(µ̃(X)) =

∫
R2
+×X

s2 ν(ds1, ds2, dx) < +∞, (7)

where s2 = (s2
1, s

2
2) and +∞ = (+∞,+∞). We summarize our findings in the following.
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Proposition 1. The function dW : P(M2
X) × P(M2

X) → [0,+∞) defines a distance on the laws
of CRVs whose Lévy intensities satisfy (6) and (7).

We conclude this section by recalling some properties of the Wasserstein distance to be used
in the sequel. Let X and Y be two random elements in R2. A coupling (ZX ,ZY ) ∈ C(X,Y ) is

said to be optimal ifW(X,Y ) = E(‖ZX−ZY ‖2)
1
2 . If an optimal coupling satisfies ZX = φ(ZY )

a.s. for some measurable function φ, we refer to φ as an optimal (transport) map from X to Y .
Optimal maps for the Wasserstein distance on the Euclidean line always exist and are explicitly
available; on the contrary, on the Euclidean plane they are not guaranteed to exist if X gives
non–zero mass to sets of codimension greater or equal to 1. Moreover, even when the existence
is established, there is no explicit way to build such maps, except in few particular cases; see
(Villani, 2008). However, Knott & Smith (1984) appointed derived a sufficient criterion to
establish the optimality of a map, namely to express it as the gradient of a convex function.
We will use this result in a reformulation provided by (Rüschendorf, 1991). When an optimal
transport map φ is available, the Wasserstein distance amounts to an expected value with respect
to a degenerate distribution having support on a 2–dimensional subspace of R4. Nonetheless, the
evaluation of such an integral is still a challenging task since bivariate integrals can be difficult
to evaluate not only analytically but also numerically.

3 Distance from exchangeability

Having established conditions for dW in (1) to be a distance on CRVs, we now use dW to compare
CRVs µ̃, ξ̃ in the same Fréchet class, i.e. with equally distributed marginal random measures

(µ̃1
d
= ξ̃1; µ̃2

d
= ξ̃2), and focus on the comparison between their dependence structures. To this

end, we put particular emphasis on the Wasserstein distance from comonotonic random vectors,
which induce exchangeable priors. In this section, we provide an analytical expression for the
optimal transportation map from a generic CRV to the comonotonic one in the same Fréchet
class. This will then be used to evaluate the exact distance between exchangeability and the
other extreme case, independence.

Definition 3. A random vector of measures µ̃ is said to be completely dependent or comonotonic
if µ̃1 = µ̃2 a.s. We write µ̃ = µ̃co.

In particular, we point out that every random vector of measures µ̃ = (µ̃1, µ̃2) in the same

Fréchet class of µ̃co satisfies µ̃1
d
= µ̃2. For this reason, since our main interest lies in exchangeabil-

ity and thus in comonotonicity, throughout the work we deal with random vectors of measures
with equal marginal distributions. It should be stressed, though, that many of our results and
techniques could be easily extended to other settings.

Theorem 2. Let µ̃ and µ̃co be CRVs in the same Fréchet class s.t. condition (6) on the Lévy
intensities holds. Then,

W(µ̃(A), µ̃co(A))2 = 4 (E
(
µ̃1(A)2

)
− ωµ̃,A), (8)

where ωµ̃,A = E
(
µ̃1(A)F−1

µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))
)
, with FX denoting the cumulative

distribution function (cdf) of X.

Upon defining Xi = µ̃i(A) for i = 1, 2, it is useful to observe that the right hand side of (8)
is equal to 4(E(X2

1 )− E(X1F
−1
X1

(FX1+X2(X1 +X2)))). In particular, for µ̃ = µ̃co one has X1 =

X2 = X, so that (8) becomes 4(E(X2) − E(XF−1
X (F2X(2X)))) = 0, since F2X(2X) = FX(X).

Moreover, when the distribution of µ̃ is symmetric, i.e. L(µ̃1, µ̃2) = L(µ̃2, µ̃1), one finds the
following alternative expression for ωµ̃,A in (8).
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Lemma 3. Let µ̃ be a symmetric CRV satisfying the conditions of Theorem 2. Then

ωµ̃,A =
1

2
E(F−1

µ̃1(A)+µ̃2(A)(U)F−1
µ̃1(A)(U)),

where U ∼ Unif([0, 1]) is a uniform random variable on [0, 1].

The expression of ωµ̃,A in Theorem 2 and Lemma 3 involves the dependence structure of µ̃
and is to be evaluated case-by-case. In some specific cases it can be computed directly leading
to the exact bivariate Wasserstein distance with respect to a comonotonic random vector in
the same Fréchet class, in short the Wasserstein distance from exchangeability. For instance,
consider a CRV µ̃ind whose marginals are independent gamma CRMs. Recall that µ̃ is a gamma
CRM with base measure αP0 if the Lévy intensity is

π(ds, dx) = αP0(dx)
e−s

s
1(0,+∞)(s) ds, (9)

where α > 0 and P0 is a probability distribution on X. Moreover, µ̃ind is a symmetric CRV, so
that Proposition 3 applies. We define

ωα,P0,A =
1

Γ(2αP0(A) + 1)∫ +∞

0
InvΓαP0(A)

(
Γ(αP0(A))

Γ(2αP0(A))
Γ(2αP0(A), t)

)
e−t t2αP0(A) dt,

where Γ(a, s) =
∫ +∞
s e−t ta−1dt is the upper incomplete gamma function and InvΓa(·) is the

inverse function of Γ(a, ·).

Corollary 4. Let µ̃ind and µ̃co be in the same Fréchet class with marginal gamma CRM with
base measure αP0. Then,

W(µ̃ind(A), µ̃co(A))2 = 4αP0(A) (1 + αP0(A)− ωα,P0,A).

Moreover,

ωα,P0,A =
1

2

∫ 1

0
InvΓ2αP0(A)(t) InvΓαP0(A)(t) dt.

For fixed values of αP0(A), we can evaluate this quantity numerically. For example, Figure 1
corresponds to α = 1 and A = X, so that numerical simulations yield ωα,P0,A ≈ 1.70. The analyt-
ical value is compared with the simulated Wasserstein distance between the empirical measures,
which is known to converge to the Wasserstein distance between the underlying distributions
as the size of the samples diverges. In many other cases the evaluation of the expression in
Theorem 2 is impossible in practice. For example, this happens if the analytical expression for
Fµ̃1(A) is not available in closed form, or when the dependence between the random measures
is modeled through the bivariate Lévy intensity. Moreover, we observe that the quantities in
Theorem 2 and Corollary 4 depend on A in a non–trivial manner, so that finding the supremum
over all Borel sets as in (1) may not be an easy task. This raises the need for informative and
tractable upper bounds on the distance, whose expression depends directly on the underlying
Lévy intensity. Note that the upper bound in (5) only depends on the marginal distributions of
the random vectors, and thus does not provide any information on their dependence structures.
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Figure 1: Simulation of the empirical Wasserstein distance between a bivariate distribution with
independent gamma marginals with shape = scale = 1 and a bivariate distribution with a.s.
equal gamma marginals of shape = scale = 1. Simulations were performed with independent
samples, independent for each sample size, using the Python Optimal Transport (POT) package
(Flamary & Courty, 2017).

4 Bounds on Fréchet classes

Given the difficulty in evaluating the integral expression of Theorem 2 for the Wasserstein dis-
tance between a CRV and a comonotonic one in the same Fréchet class, we aim at deriving
suitable bounds. We first face the problem in general and develop upper bounds for the Wasser-
stein distance between two CRVs. Then, in the following sections, these general bounds will
be specialized to the distance from exchangeability, which is the case of interest for Bayesian
inference. Our general bounds rely on a compound Poisson approximation of the CRVs, which
are induced by certain compatible families of neighborhoods of the origin. Henceforth we assume
that µ̃ is an infinitely active CRV s.t. condition (6) on the Lévy intensity ν holds.

Definition 4. Consider a family B = {B(ε) | ε ∈ (0, 1]} of measurable neighborhoods of the
origin in R2

+ s.t.

(B1) the family is increasing, i.e. ε1 ≤ ε2 implies that B(ε1) ⊂ B(ε2);

(B2) the Lévy intensity gives zero mass to their intersection, i.e. ν(∩ε∈(0,1]B(ε) × A) = 0 for
every A ∈ X ;

(B3) the sets D = {D(ε) = B(ε)c = R2
+ \ B(ε) | ε ∈ (0, 1]} have continuously increasing mass,

i.e. there exists r0 = ν(∩ε∈(0,1]D(ε)) s.t. for every r > r0 there exists εr = εr,A s.t.
ν(D(εr)×A) = r.

Then we say that the family B is compatible with µ̃. By extension, we will also refer to the
family of complementary sets D as compatible.

Remark 1. Some technical comments are in order: (a) The choice of the index set to be (0, 1]
is arbitrary. Indeed, one could replace it with any neighborhood of the origin in R+. (b) The
uncountable intersection ∩ε∈(0,1]D(ε) is measurable because the family is increasing. One can
find more on this in Section 9. (c) Property (B2) does not contradict the continuity of the
measure since ν is an infinite measure.
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(1) (2) (3)

Figure 2: Three families of neighborhoods of the origin:
(1) B+(ε) = {(s1, s2) | s1 + s2 ≤ ε};
(2) BE1(ε) = {(s1, s2) |E1(s1)−θ + E1(s2)−θ ≤ ε} with θ = 0.5;
(3) Bmin(ε) = {(s1, s2) | min(s1, s2) ≤ ε}.

Remark 2. A standard way to find a family of measurable neighborhoods of the origin that
satisfy (B1) is to consider the level sets

Bg(ε) = {(s1, s2) | g(s1, s2) ≤ ε}, (10)

where g : [0,+∞) × [0,+∞) → R+ is a measurable function s.t. g(0, 0) = 0. See Fig-
ure 2. Depending on the support of ν, properties (B2) and (B3) may hold. For example, if
g(s1, s2) = min(s1, s2), Bg is not compatible with ν having mass on the axis, whereas it is com-
patible with ν being absolutely continuous (a.c.) w.r.t. the Lebesgue measure.
As it will be seen in the sequel, we will mostly be interested in Lévy intensities that are
a.c. w.r.t. the Lebesgue measure or have mass on lines passing through the origin. In these
cases, every continuous map g s.t. g(s1, s2) = 0 if and only if (s1, s2) = (0, 0) induces a compati-
ble family. In particular, we will be interested in the families B+ and BE1 appearing in Figure 2,
where E1(s) = Γ(0, s) is the exponential integral.

Given a compatible family D, for every r > r0 and A ∈ X we define the probability distri-
bution ρr,A,D on R2

+ as

ρr,A,D(ds1, ds2) =
1

r
ν(ds1, ds2, A)1D(εr,A)(s1, s2), (11)

where we use the notation ν(ds1, ds2, A) =
∫
A ν(ds1, ds2, dy). As apparent from the proof of

the next theorem, this coincides with the distribution of the jumps of a compound Poisson
approximation of µ̃.

Theorem 5. Let µ̃1 and µ̃2 be infinitely active CRVs in the same Fréchet class s.t. condition
(6) on the Lévy intensities holds. Then,

W(µ̃1(A), µ̃2(A)) ≤ lim
r→+∞

√
r W(ρ1

r,A,D1
, ρ2
r,A,D2

),

for any Di compatible family for µ̃i, for i = 1, 2. Moreover, the upper bound on the right hand
side is finite and does not depend on D1 and D2.

Remark 3. Since any CRV µ̃ has infinitely many compatible family, the above theorem holds
also in the case µ̃1 = µ̃2 and D1 6= D2. Since the limit does not depend on the families D1 and
D2, we know that in such case it is equal to zero.
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The proof is detailed in Section 9 and is based on a bound on the Wasserstein distance
between compound Poisson distributions. A similar problem was treated in (Mariucci & Reiß,
2018) for Lévy processes on R. Nonetheless, the extension to R2 needs a new bound on the
compound Poisson distributions in R2, summarized by the following proposition. Indeed, the
arguments used in (Mariucci & Reiß, 2018, Theorem 10) could be used to bound the Wasserstein
distance from above with

√
r + r2 W(ρ1

r,A,D1
, ρ2
r,A,D2

), which goes to +∞ as r → +∞.

Proposition 6. Let X
d
=
∑Nx

i=1X
i and Y

d
=
∑Ny

i=1 Y
i be two compound Poisson processes in R2

s.t. Nx and Ny are Poisson random variables with mean r and {Xi | i ≥ 1} and {Y i | i ≥ 1} are
sequences of independent and identically distributed random elements in R2, independent from
Nx and Ny respectively. Then

W(X,Y )2 ≤ rW(X1,Y 1)2 + (r2 − r) ‖E(X1)− E(Y 1)‖2.

Remark 4. Theorem 5 bounds the Wasserstein distance between the CRVs with the Wasser-
stein distance between quantities that only depend on the bivariate Lévy intensities. Yet, the
Wasserstein distance between these two quantities suffers from all the technical difficulties re-
lated to the Wasserstein distance in R2. Hence, it is complicated to evaluate it, analytically and
numerically. The next sections are devoted to this task.

5 Bounds on exchangeability

Our next goal is to measure the dependence of a given CRV as the Wasserstein distance from
exchangeability, which is induced by comonotonic CRVs. For this reason, we now specialize
the results of the previous section, which apply to all CRVs in the same Fréchet class, to this
particular framework of great importance for Bayesian inference.
In order to evaluate the bound in Theorem 5 numerically, we first need an explicit expression
for the Wasserstein distance between the jumps of the compound Poisson approximations. With
this goal in mind, we first dwell on the Lévy intensity νco of a comonotonic random vector µ̃co.

Figure 3: Support of the Lévy intensity of a comonotonic CRV.

Proposition 7. For every A ∈ X , the Lévy intensity νco(ds1, ds2, A) has support on the bisecting
line of R2

+, i.e.

νco(ds1, ds2, A) = δs1(ds2) ν1(ds1, A) = δs2(ds1) ν2(ds2, A).

It follows that every random vector µ̃ in the same Fréchet class of µ̃co has equal marginal
Lévy intensities ν1(ds, dx) = ν2(ds, dx), which we denote with π(ds, dx). In particular for every
A ∈ X , π(ds,A) = π(s,A) ds is a.c. w.r.t. the Lebesgue measure and infinitely active. We denote
with UπA(t) =

∫
[t,+∞) π(s,A) ds its tail integral.

The following theorem provides the exact expression of the limit appearing in Theorem 5 together
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with a class of upper bounds. The latter are useful when the exact expression cannot be evaluated
analytically or numerically, as will be seen in Section 7.2. We first define some relevant quantities:

hgν,A(s) =

∫
R2
+

1(s,+∞)(g(t1, t2)) ν(dt1, dt2, A); (12)

Kg
ν,A =

2∑
i=1

∫
R2
+

|si − (UπA)−1(hgν,A(g(s1, s2)))|2 ν(ds1 ds2, A);

where g : R2 → R is a measurable map. When g(s1, s2) = s1 + s2 we write h+
ν,A and K+

ν,A. In
particular, since g(s1, s2) = s1 + s2 is symmetric and ν has equal marginal measures

K+
ν,A = 2

∫
R2
+

|s1 − (UπA)−1(h+
ν,A(s1 + s2))|2 ν(ds1 ds2, A). (13)

Theorem 8. Let µ̃ and µ̃co satisfy the conditions of Theorem 5 s.t. B+ defined in Remark 2 is
compatible with µ̃. Then

lim
r→+∞

rW(ρr,A,D, ρ
co
r,A,Dco)2 = K+

ν,A. (14)

Moreover, for every continuously differentiable g : R2 → R s.t. Bg is compatible with µ̃, K+
ν,A ≤

Kg
ν,A.

Theorem 8 thus establishes that g(s1, s2) = s1 + s2 realizes the optimal bound in the class
{Kg

ν,A}. The expression forK+
ν,A resembles the one for the Wasserstein distance in Theorem 2 and

is derived in a similar way. Nonetheless, by working at the level of the bivariate Lévy intensities
rather than at the level of the evaluations on a set µ̃(A), we overcome many of the difficulties
related to its evaluation. In particular, when the Lévy intensity ν( · , A) is a.c. w.r.t. the Lebesgue
measure on R2 for any A in X , K+

ν,A comes in a compelling form. In a such case we denote with
ν(s1, s2, A) its Radon–Nikodym derivative and define

Kν,A =

∫ +∞

0
(UπA)−1(h+

ν,A(t))

∫ t

0
s ν(s, t− s,A) ds dt,

where h+
ν,A is as in (12).

Theorem 9. Let µ̃ and µ̃co satisfy the conditions of Theorem 5. If the Lévy intensity of µ̃ is
such that, for any A ∈ X , ν( · , A) is a.c. w.r.t. the Lebesgue measure on R2, then

lim
r→+∞

rW(ρr,A,D, ρ
co
r,A,Dco)2 = 4

(∫ +∞

0
s2 π(ds,A) ds−Kν,A

)
.

Remark 5. We observe that the first integral in the bound only depends on the marginal
distributions and provides a general upper bound for the distance. This can be seen as an
improvement of the bound in (5), which amounts to

W(µ̃(A), µ̃co(A))2 ≤ 4

(∫ +∞

0
s2 π(s,A) ds+

∫ +∞

0
s π(s,A) ds

)
,

where π is the marginal Lévy intensity, as defined at the beginning of the section. On the other
hand, Kν,A provides information contained in the dependence structure. In Section 7.1 this will
be specialized for a concrete example.

Remark 6. When the Lévy intensities are homogeneous, i.e.

ν(ds1, ds2, dx) = αP0(dx) ν(ds1, ds2), (15)
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where P0 is a probability distribution on X and α > 0, also the marginal Lévy intensity takes
the form π(dx, ds) = αP0(dx)π(s) ds and we denote by Uπ(t) =

∫ +∞
t π(s) ds the tail integral.

If the Lévy intensity is also diffuse, K+
ν,A = αP0(A)Kν , where

Kν =

∫ +∞

0
(Uπ)−1(h+

ν (t))

∫ t

0
s ν(s, t− s) ds dt; (16)

h+
ν (s) =

∫
R2
+

1(s,+∞)(t1 + t2) ν(t1, t2) dt1 dt2.

In particular, this entails that

dW(µ̃, µ̃co)2 ≤ 4α

(∫ +∞

0
s2 π(ds) ds−Kν

)
.

6 Independence

In this section we will use Proposition 6 to bound the distance between exchangeability and
the other extreme case, independence. As we shall see, in this case the Lévy intensity is not
a.c. w.r.t. the Lebesgue measure and thus the results of Theorem 9 do not apply.

Figure 4: Support of the Lévy intensities of a CRV with independent marginals.

Let µ̃ind be a CRV with independent marginals and let νind denote its Lévy intensity. An
immediate adaptation of (Kallsen & Tankov, 2006, Lemma 4.1) shows that the corresponding
Lévy intensities νind(ds1, ds2, A) have support on the axis, namely

νind(ds1, ds2, A) = δ0(ds2) νind
1 (ds1, A) + δ0(ds1) νind

2 (ds2, A).

In our setting, νind
1 (ds1, A) = νind

2 (ds2, A) = π(s,A) ds. Before stating the main result, we
introduce the following quantity, which only depends on the marginal distribution π of the
CRVs:

Kπ,A =

∫ +∞

0
(UπA)−1(2UπA(s)) s π(s,A) ds.

Theorem 10. Let µ̃ind and µ̃co be in the same Fréchet class s.t. the conditions of Theorem 5
hold. Then

lim
r→+∞

rW(ρind
r,A, ρ

co
r,A)2 = 4

(∫ +∞

0
s2 π(s,A) ds−Kπ,A

)
.

Remark 7. Similarly to Remark 6, when the Lévy intensities are homogeneous, Kπ,A =

αP0(A)Kπ, where Kπ =
∫ +∞

0 (Uπ)−1(2Uπ(s)) s π(s) ds.

We now apply Theorem 10 to the case where the marginal distribution is a gamma CRM
with base measure αP0, as in Corollary 4, which allows us to compare the exact Wasserstein
distance with the relative bound. We first define the constant

γ = 4− 4

∫ +∞

0
(E1)−1(2E1(s)) e−s ds, (17)
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where, as before, E1(s) = Γ(0, s) is the exponential integral. Numerical integration show that
γ ≈ 1.24.

Corollary 11. Let µ̃ind and µ̃co be in the same Fréchet class with marginal gamma CRM with
base measure αP0. Then,

W(µ̃ind(A), µ̃co(A))2 ≤ γ αP0(A).

In particular, dW(µ̃ind, µ̃co)2 ≤ γ α.

In Figure 5 we present a graphical comparison between the exact distance in Corollary 4, the
simulated empirical distance in Figure 1 as the sample size increases and the theoretical bound
established in Theorem 11. We omit the non–informative bound in Remark 5 from the figure
because it is out of scale (equal to 8) and point out that the theoretical bound appears to be
very tight.
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Figure 5: Simulations of the empirical Wasserstein distance in Figure 1 compared with the non–
informative bound in Remark 5 and the informative bound in Theorem 11. As detailed in Figure 1,
simulations were performed with independent samples, independent for each sample size, using the Python
Optimal Transport (POT) package (Flamary & Courty, 2017).

Similar results may be achieved for generalized gamma CRMs, whose Lévy intensity is

π(ds, dx) = αP0(dx) e−b s s−1−σ
1(0,+∞)(s) ds,

for some α > 0, P0 a probability distribution on X, b > 0 and σ ∈ (0, 1). In particular, gamma
random measures as defined in (9) are achieved when σ = 0 and b = 1. We define

γb,σ = 4− 4
1

bΓ(1− σ)

∫ +∞

0
InvΓ−σ(2 Γ(−σ, b s)) e−b s s−σ ds, (18)

where Γ(a, s) =
∫ +∞
s e−t ta−1dt is the upper incomplete gamma function and InvΓa(·) is the

inverse function of Γ(a, ·). Clearly, γ1,0 = γ in (17).

Corollary 12. Let µ̃ind and µ̃co be in the same Fréchet class with marginal generalized gamma
CRM with parameters b, σ and base measure αP0. Then,

W(µ̃ind(A), µ̃co(A))2 ≤ γb,σ αP0(A).

In particular, dW(µ̃ind, µ̃co)2 ≤ γb,σ α.
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The bounds in Corollary 12 shed light on the role of the hyperparameters in the distance
between the two extreme cases of independence and exchangeability. In particular, Figure 6
shows that the distance increases linearly as σ increases and logarithmically as b increases.
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Figure 6: Numerical integrations of γb,σ. On the left, b = 1 and σ varies from 0 to 0.7. On the right,
σ = 0.5 while b varies from 1 to 10.

7 Measuring dependence in nonparametric models

We now analyze three popular procedures to model the dependence between CRMs through the
choice of an hyperparameter, namely compound random measures, Clayton–Lévy copula and
GM–dependence. These can be seen as the infinite–dimensional extension of the approximately
exchangeable priors suggested by de Finetti (de Finetti, 1938) for binary data, and further
investigated in Bacallado et al. (2015). Our theoretical findings allow for a formal quantification
of the dependence in terms of a meaningful bound on the distance from exchangeability. These
bounds are expressed in terms of the models’ hyperparameters leading to intuitive results, which
can also guide the parameters’ elicitation.

7.1 Compound random measures

Compound random measures, introduced in Griffin & Leisen (2017), provide a general framework
for building CRVs. These may be used to model the dependence between CRMs with many
different marginal distributions, such as gamma, generalized gamma, beta and σ-stable random
measures.

Definition 5. A compound random measure µ̃ = (µ̃1, µ̃2) is a CRV of the form(
µ̃1

µ̃2

)
=

+∞∑
i=1

(
m1,i

m2,i

)
Ji δXi ,

where η̃ =
∑+∞

i=1 Ji δXi is a homogeneous CRM with Lévy intensity αP0(dx) ν∗(ds) and (m1,i,m2,i)
iid∼

h, where h is a bivariate density.

In Griffin & Leisen (2017) the authors prove that such µ̃ is a CRV with bivariate Lévy
intensity

ν(ds1, ds2, dx) = αP0(dx)

∫
R+

1

u2
h

(
s1

u
,
s2

u

)
ν∗(du) ds1, ds2.

Specific choices for ν∗ and h lead to different marginal CRMs and dependence structures. In
particular, by taking h corresponding to the distribution of two independent gamma (φ, 1)
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random variables and ν∗(du) = (1−u)φ−1u−1
1(0,1)(u) du, one achieves marginal gamma random

measures of shape parameter 1 and base measure αP0. We write µ̃ ∼ CoGamma(φ, α, P0).
Here we focus on the case of gamma marginal random measures, though the techniques may be
generalized. Our aim is to quantify dependence, which is controlled by the parameter φ. We
first introduce some relevant quantities.

Kφ =

∫ +∞

0
E−1

1 (e(φ, t))φ f(φ, 2φ, t) dt,

e(φ, t) =
1

Γ(2φ)

∫ 1

0
Γ

(
2φ,

t

u

)
(1− u)φ−1 u−1 du, eN(φ, t) =

2φ−1∑
k=0

f(φ, k, t)

f(φ, x, t) =
tx

Γ(x)

∫ 1

0
e−

t
u (1− u)φ−1 u−x−1 du.

fN(φ, n, t) =
tn

n!

φ−1∑
j=0

(
φ− 1
j

)
(−1)jg(n, j, t),

where g(n, j, t) is equal to{
t−n+j (n− j − 1)! e−t

∑n−j−1
h=0

th

h! if n > j
1

(j−n)!

(
e−t

∑j−n−1
j=0 (−1)h (j − n− h− 1)!th + (−1)j−nE1(t)

)
if n ≤ j.

Theorem 13. Let µ̃ ∼ CoGamma(φ, α,P0) and let µ̃co denote the comonotonic random vector
in the same Fréchet class. Then,

W(µ̃(A), µ̃co(A))2 ≤ 4αP0(A) (1−Kφ).

In particular, dW(µ̃, µ̃co)2 ≤ 4α (1−Kφ). Moreover, when φ ∈ N, e = eN and f = fN.

Theorem 13 allows to conveniently compute the Wasserstein distance from exchangeability
for φ an integer value. Table 1 displays some numerical results for different values of φ. As φ
increases, the dependence between the induced marginal gamma random measures also increases.
Moreover, we stress that the case φ = 1 is of particular interest since it corresponds to the
dependence structure discussed in (Leisen et al., 2013).

φ 1−Kφ (≈)

1 0.1426
5 0.0545
10 0.0241
30 0.0081

Table 1: Values of the constant 1 −Kφ appearing in the bound of Theorem 13 for different
values of φ.

We may compare the theoretical upper bounds in Thoerem 13 with the simulated Wasserstein
distance, as in Figure 4 and 8. As in the previous cases, our upper bounds appear to be tight
and informative.
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Figure 7: Simulation of the empirical Wasserstein distance between a random vector
(µ1(X), µ2(X)) with marginal compound random measures of parameters (φ, α, P0), where
α = 1 and φ varies, and a bivariate distribution with a.s. equal gamma marginals of shape =
scale = 1. Simulations were performed with independent samples of 10000 observations using
the Python Optimal Transport (POT) package (Flamary & Courty, 2017).

7.2 Clayton–Lévy copula

Lévy copulae provide another popular way to model dependence between CRMs. Standard
copulae can be seen as a means to separate the marginal components of a bivariate distribution
from its dependence structure. The same happens for their generalization to Lévy intensities,
conceived in Tankov (2003) and Cont & Tankov (2004) to model the dependence structure
between Lévy processes. See also (Kallsen & Tankov, 2006) and (Epifani & Lijoi, 2010; Leisen
& Lijoi, 2011) for uses on CRMs. Given a bivariate Lévy intensity ν(ds1, ds2, A), we indicate by
Ui,A(t) =

∫∞
t νi(ds,A), for i = 1, 2, its marginal tail integrals. An analogue of Sklar’s Theorem

states that there exists a Lévy copula c : [0,+∞]2 → [0,+∞] s.t.

ν((t1,+∞)× (t2,+∞)×A) = c(U1,A(t1), U2,A(t2)).

When the Lévy copula c and the tail integrals U1,A, U2,A are sufficiently smooth, ν(ds1, ds2, A)
is recovered by

ν(ds1, ds2, A) =
∂2

∂u1∂u2
c(u1, u2)

∣∣
U1,A(s1),U2,A(s2)

ν1(ds1, A) ν2(ds2, A). (19)

It follows that Lévy copulae are useful to build bivariate Lévy intensities, allowing to gain insight
into their dependence structure. Consider the Clayton–Lévy copula, which is a smooth class of
copulae with both independence and complete dependence as limiting cases:

cθ(s1, s2) = (s−θ1 + s−θ2 )−
1
θ ,

for θ > 0. This was used, for example, in (Epifani & Lijoi, 2010; Leisen & Lijoi, 2011). As
θ → +∞ one achieves the complete dependence copula (Kallsen & Tankov, 2006) which, by
taking equal marginal Lévy intensities, corresponds to the exchangeability assumption. We
write µ̃ ∼ Cl(θ, α, P0) for a CRV with marginal gamma random measures with base measure
αP0 and Lévy copula cθ. Our goal is to show that, as θ → +∞, µ̃ converges in the Wasserstein
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distance to the comonotonic random vector with same marginal distributions and also to provide
an upper bound for the rate of convergence. Define

Kθ =
1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y
− 1
θ

1

)
E−1

1

(
1 + θ

θ
y
− 1
θ

2

)
y
− 1
θ
−2

2 dy1 dy2.

Theorem 14. Let µ̃ ∼ Cl(θ, α, P0) and let µ̃co be in the same Fréchet class. Then

dW(µ̃, µ̃co)2 ≤ 4α (1−Kθ).

Moreover, as θ → +∞, Kθ goes to 1.

7.3 GM–dependence

In the next nonparametric model we consider, introduced in (Lijoi et al., 2014), the dependence
between CRMs is induced by the bivariate Poisson process proposed in Griffiths & Milne (1978),
which brings to an appealing additive structure.

Definition 6. A CRV ξ is GM–dependent if(
ξ̃1

ξ̃2

)
d
=

(
µ̃1 + µ̃0

µ̃2 + µ̃0

)
, (20)

where µ̃0, µ̃1 and µ̃2 are three independent CRMs with Lévy intensities

v1(ds, dx) = v2(ds, dx) = α z P0(dx) ρ(s) ds

v0(ds, dx) = α (1− z)P0(dx) ρ(s) ds,

where α > 0, z ∈ (0, 1), P0 is a probability measure on R and ρ is a measurable function.

Set µ̃ind = (µ̃1, µ̃2) and µ̃co
0 = (µ̃0, µ̃0) to underline that they are, respectively, an independent

and a comonotonic CRV. The CRV ξ has marginal Lévy intensity π(ds, dx) = αP0(dx) ρ(s) ds,
but we are not given the corresponding bivariate Lévy intensity. Nonetheless, the next result
provides bounds on its distance from the comonotonic and the random vector with independent
marginals in the same Fréchet class, in terms of the underlying random vectors µ̃ind, µ̃co

0 .

Proposition 15. Let ξ̃ be a GM–dependent CRV and let ξ̃co denote the comonotonic random
vector in the same Fréchet class. Then

dW(ξ̃, ξ̃co) ≤ dW(µ̃ind, µ̃co);

dW(ξ̃, ξ̃ind) ≤ dW(µ̃ind
0 , µ̃co

0 ),

where µ̃co is the comonotonic CRV in the same Fréchet class of µ̃ind and µ̃ind
0 is the CRV with

independent marginals in the same Fréchet class of µ̃co
0 .

When the marginals are generalized gamma CRMs, the specification of the previous bounds
together with Theorem 12 brings to the following. In particular, this covers the case where the
marginals are gamma random measures, as in (Lijoi et al., 2014).

Corollary 16. Let ξ̃ be a GM–dependent CRV with marginal generalized gamma random mea-
sures with parameters b, σ and total measure α. Then

dW(ξ̃, ξ̃co)2 ≤ γb,σ α z, dW(ξ̃, ξ̃ind)2 ≤ γb,σ α (1− z).

where γb,σ is the constant defined in (18).
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As one could expect from the construction in Definition 6, the larger the parameter z, the
closer one is to the situation of independence and the farther from the one of exchangeability.
Our techniques allow for the derivation of convergence rates for the approximation of exchange-
ability as z → 1, in terms of the Wasserstein distance.
Figure 8 below shows the comparison between the simulated Wasserstein distance and our the-
oretical upper bound, as z increases, when the marginals are gamma CRMs (σ = 0, b = 1).
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Figure 8: Simulation of the Wasserstein distance between a GM–dependent CRV
(µ1(X), µ2(X)) of parameter z with gamma marginals of shape = scale = 1 and a bivariate
distribution with a.s. equal gamma marginals of shape = scale = 1. Simulations were per-
formed with independent samples of 10000 observations.

In this section we have found tight upper bounds for the distance dW from comonotonicity
for notable homogeneous CRVs, leveraging on the simplifications highlighted in Remark 6: since
the Lévy measure factorizes, the supremum of the Wasserstein distance over all Borel sets is
always attained on the entire sample space X. In fact, most Bayesian nonparametric models are
based on homogeneous CRVs. However, studying non homogeneous CRVs would certainly be
interesting as well, though finding the supremum could be considerably more complex.

8 Measuring dependence between random hazards

Up to now we have investigated the dependence structure at the level of random measures,
which constitute the key building block of most Bayesian nonparametric models. This has the
advantage of being generic, in the sense of being independent of the particular transformation
of the random measures leading to a given class of models. However, a complementary analysis
tailored to such specific classes of models is also of interest. Popular transformations include
normalization for modeling random probability measures (Regazzini et al., 2003), exponentiation
to obtain a random survival functions (Doksum, 1974), simple cumulation in to achieve random
cumulative hazards (Hjort, 1990), as well as kernel mixtures (Dykstra & Laud, 1981), which lead
to (a.s. continuous) random hazard rates and will be the focus of this section.

For F an absolutely continuous cumulative distribution function on [0,+∞), we recall that
the hazards are defined as h = F ′/(1 − F ) and represent the instantaneous risk of failure.
Random mixture hazards are then given by h̃(t) =

∫
X k(t|x) dµ̃(x), with k : R+ × X → [0,+∞)

a measurable kernel and µ̃ a CRM. This model was initially proposed with a specific kernel a
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gamma CRM as mixing measure in Dykstra & Laud (1981). It has been further generalized
to generic kernels (Lo & Weng, 1989) and to generic CRMs (James, 2005) and became quite
popular in the survival analysis and reliability literature leading to interesting theoretical and
applied contributions. See e.g. (Ishwaran & James, 2004; Peccati & Prünster, 2008; De Blasi
et al., 2009; Lau et al., 2020). More recently, the focus has been on the construction of dependent
versions of this class of models. Indeed, if µ̃ is a random vector of measures,

h̃(t) =

∫
X
k(t|x) µ̃(dx) (21)

defines dependent hazards, which may be used as de Finetti priors for partially exchangeable
sequences. Notable examples include hierarchical dependent structures Camerlenghi et al. (2020)
and GM-dependent structures Lijoi & Nipoti (2014). The results of Section 5 and Section 7 may
be adapted to quantify the dependence between the random hazards when µ̃ is a CRV. This
brings to a direct measure of dependence between the de Finetti priors corresponding to different
groups.
A first key result is Lemma 17 applied to the function f(·) = k(t|·), which leads to the expression

h̃(t)
d
= µ̃t(X) for an appropriate CRV µ̃t. Given two measure spaces X1 and X2, we recall that

if ν is a measure on X1 and g : X1 → X2 is a measurable function, the pushforward measure
g#ν on X2 is defined by (g#ν)(A) = ν(g−1(A)).

Lemma 17. Let µ̃ be a CRV with intensity measure ν and let f : X → R+ be a measurable
function. Then the random vector of measures µ̃f (dx) = f(x)µ̃(dx) is a CRV with Lévy intensity
equal to the pushforward measure νf = pf # ν where pf (s1, s2, x) = (s1f(x), s2f(x), x).

Lemma 17 may be seen as a multivariate extension of (Catalano et al., 2020, Lemma 6). In
particular, we observe that the hazard rates h̃co induced by a comonotonic CRV µ̃co through
(21) are comonotonic, i.e. h̃co

1 (t) = h̃co
2 (t) a.s. for every t. Similarly, when µ̃ind is the inde-

pendent CRV, the induced hazards h̃ind are independent. We use this observation to study
the Wasserstein distance between the dependent hazards and the two extreme cases of comono-
tonicity and independence. Proposition 18 deals with the GM–dependent hazards of Lijoi &
Nipoti (2014) when the marginals are gamma random measures and the kernel of the type of
Dykstra & Laud (1981), namely k(t|x) = β(y)1[0,t](x), which is a popular choice for modeling
increasing hazards. For simplicity we restrict to constant functions β(s) = β, which are the most
common choice in applications. In such scenario one usually considers the base measure of the
gamma random measure to be equal to the Lebesgue measure on a large time interval [0, T ], i.e.
αP0(ds) = 1[0,T ](s) ds, so that X = R. Let

γβ = 4− 4β

∫ +∞

0
(E1)−1

(
2E1

( s
β

))
e
− s
β ds. (22)

Proposition 18. Let h̃ be dependent hazards as defined in (21) s.t. µ̃ is a GM–dependent CRV
(20) with marginal gamma CRM of base measure αP0(ds) = 1[0,T ](s) ds and k(t|x) = β1[0,t](x),

with β > 0. If h̃co, h̃ind are in the same Fréchet class as h̃, for every t ∈ [0, T ],

W(h̃(t), h̃co(t))2 ≤ γβ t z, W(h̃(t), h̃ind(t))2 ≤ γβ t (1− z).

where γβ is the constant defined in (22).

9 Proofs

9.1 Background results

We first recall some key results concerning the Wasserstein distance. See (Bickel & Freedman,
1981, Lemma 8.6 and 8.8). If (X1, . . . ,Xn) and (Y 1, · · · ,Y n) are tuples of independent random
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vectors on R2, then

W(X1 + · · ·+Xn,Y 1 + · · ·+ Y n) ≤
n∑
i=1

W(Xi,Y i). (23)

Moreover, if X and Y are two random vectors on R2 with finite second moment, then

W(X,Y )2 =W(X − E(X),Y − E(Y ))2 + ‖E(X)− E(Y )‖2. (24)

Next, if P1, P2, Q1, Q2 are probability measures, then for every α ∈ [0, 1]

W(αP1 + (1− α)P2, αQ1 + (1− α)Q2) ≤
αW(P1, Q1) + (1− α)W(P2, Q2). (25)

Furthermore, we recall (Rüschendorf, 1991, Theorem 12) to establish the optimality of a
transport map.

Theorem 19 (Rüschendorff 1991). If X is a random object on R2 and φ : R2 → R2 is contin-
uously differentiable, then (X, φ(X)) is an optimal coupling with respect to the 2–Wasserstein
distance if and only if the following hold:

1. φ is monotone, i.e. 〈x − y, φ(x) − φ(y)〉 ≥ 0 for every x,y ∈ R2, where 〈·〉 indicates the
standard scalar product on R2;

2. The matrix Dφ =
( ∂φi
∂xj

)
i,j

is symmetric.

9.2 Proof of Theorem 2

The proof of Theorem 2 is based on the following result, which will also be instrumental to
further proofs. As before, FX denotes the cdf of X.

Theorem 20. Let X1, X2, X be possibly dependent random variables whose law is a.c. w.r.t. the
Lebesgue measure on R. Then, for every continuously differentiable g : R2 → R, the map

(x1, x2)7→φg(x1, x2) = (F−1
X ◦ Fg(X1,X2) ◦ g (x1, x2), F−1

X ◦ Fg(X1,X2) ◦ g (x1, x2)),

provides a transportation map between L(X1, X2) and L(X,X). Moreover,

(x1, x2)7→φ(x1, x2) = (F−1
X ◦ FX1+X2(x1 + x2), F−1

X ◦ FX1+X2(x1 + x2)),

is an optimal transport map.

Proof. First observe that Fg(X1,X2) ◦g(X1, X2) ∼ Unif([0, 1]). Since X is a.c. w.r.t. the Lebesgue

measure on R, F−1
X ◦ Fg(X1,X2) ◦ g(X1 + X2)

d
= X. This ensures that φg is indeed a coupling

between (X1, X2) and (X,X). In order to prove that φ is an optimal transport map, we refer
to the sufficient conditions described in Theorem 19. Note that

〈x− y, φ(x)− φ(y)〉 =

= (x1 − y1 + x2 − y2) (F−1
X ◦ FX1+X2(x1 + x2)− F−1

X ◦ FX1+X2(y1 + y2)).

Since cdfs are non–decreasing functions, and the inverse of a non–decreasing function is non–
decreasing as well, F−1

X is non–decreasing. Thus x1+x2 ≤ y1+y2 if and only if F−1
X ◦FX1+X2(x1+

x2) ≤ F−1
X ◦ FX1+X2(y1 + y2). It follows that the previous expression is always non–negative,

and the monotonicity condition holds. As for the symmetry, this easily holds since the two
components of φ are the same and are symmetric in the two arguments.
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Now consider µ̃(A) = (X1, X2) and µ̃co(A) = (X,X). Theorem 20 guarantees that

W(µ̃(A), µ̃co(A))2 =

2∑
i=1

E
(∣∣µ̃i(A)− F−1

µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))
∣∣)2

and note that F−1
µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))

d
= µ̃1(A). Thus, we have

W(µ̃(A), µ̃co(A))2 = 4 (E
(
µ̃1(A)2

)
− ωµ̃,A).

9.3 Proof of Lemma 3

Let µ̃(A) = (X1, X2), so that ωµ̃,A = E(X1F
−1
X1

(FX1+X2(X1 + X2))) . Since L(X1, X2) =
L(X2, X1),

E(X1F
−1
X1

(FX1+X2(X1 +X2))) =
1

2
E((X1 +X2)F−1

X1
(FX1+X2(X1 +X2))).

A change of variable U = FX1+X2(X1 +X2) ∼ Unif([0, 1]) leads to the conclusion.

9.4 Proof of Corollary 4

The proof is based on Theorem 2 and Proposition 3. First observe that µ̃1(A) ∼ gamma(αP0(A)).
Thus E(µ̃1(A)2) = αP0(A)(1 + αP0(A)). Moreover, ωµ̃,A can be rewritten as

E
(
µ̃1(A)S−1

µ̃1(A)(Sµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))
)
,

where SX denotes the survival function. Now, since µ̃1(A) and µ̃2(A) are independent, µ̃1(A) +
µ̃2(A) ∼ gamma(2αP0(A)). Thus, we have

ωµ̃,A =

∫ +∞

0

∫ +∞

0
s1 InvΓαP0(A)

(
Γ(αP0(A))

Γ(2αP0(A))
Γ(2αP0(A), s1 + s2)

)
·

· ραP0(A)(s1) ραP0(A)(s2) ds1 ds2

with ρφ the density function of a gamma(φ,1). With a change of variables (t1, t2) = (s1, s1 + s2)
this is equal to∫ +∞

0
InvΓαP0(A)

(
Γ(αP0(A))

Γ(2αP0(A))
Γ(2αP0(A), t2)

)
·

·
∫ t2

0
t1 ραP0(A)(t1) ραP0(A)(t2 − t1) dt1 dt2.

Now, t1 ραP0(A)(t1) = αP0(A) ραP0(A)+1(t1), so that∫ t2

0
t1 ραP0(A)(t1) ραP0(A)(t2 − t1) dt1 dt2

is proportional to the convolution between two gamma random variables with parameters, re-
spectively, (αP0(A) + 1,1) and (αP0(A),1), evaluated in t2. This corresponds to the density of
a gamma(2αP0(A) + 1,1) random variable evaluated in t2. Thus ωµ̃,A is equal to

αP0(A)

Γ(2αP0(A) + 1)

∫ +∞

0
InvΓαP0(A)

(
Γ(αP0(A))

Γ(2αP0(A))
Γ(2αP0(A), t)

)
e−t t2αP0(A) dt.

The alternative expression for ωα,P0,A follows similarly from Proposition 3.
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9.5 Proof of Theorem 5

We show that for every real sequence {rn |n ∈ N} s.t. limn→+∞ rn = +∞,

W(µ̃1(A), µ̃2(A)) ≤ lim
n→+∞

√
rnW(ρ1

rn,A,D1
, ρ2
rn,A,D2

). (26)

Since both complementary families D1, D2 have continuously increasing mass, there exists n0

s.t. for every n > n0 there exist ε1n,A, ε
2
n,A > 0 s.t.

rn = ν1(D(ε1n,A)×A) = ν2(D(ε2n,A)×A). (27)

Before moving to the core of the proof, we show that

lim
n→+∞

εin,A = 0. (28)

We reason by contradiction. Supposing (28) does not hold, there must be a subsequence {εihn,A}
converging to a (possibly infinite) limit εi∗ 6= 0. Since limn→+∞ rn = +∞, also limn→+∞ rhn =
+∞. Then there is at least one increasing subsequence {rkn |n ∈ N} ⊂ {rhn |n ∈ N} s.t.
limn→+∞ ε

i
kn,A

= εi∗ and limn→+∞ rkn = +∞.

Since D is increasing and ν is monotone, rkn ≤ rkn+1 implies D(εikn,A) ⊂ D(εikn+1,A
). Thus by

the monotone convergence theorem,

+∞ = lim
n→+∞

νi(D(εikn,A)×A) = νi(D(εi∗)×A).

Given the Lévy intensity is finite outside of the origin by (3), νi(D(εi∗)× A) < +∞, which is a
contradiction. Thus (28) holds.
Now recall that by (2) there exist Poisson random measures N i s.t. for every A ∈ X , µ̃i(A) =∫
R2
+×A

s N i(ds1, ds2, dx), for i = 1, 2. Since the evaluations of Poisson random measures on

disjoint sets are independent, by (23) for every n > 0,

W(µ̃1(A), µ̃2(A)) ≤

W
(∫

B1(ε1n,A)×A
s N 1(ds1, ds2, dx),

∫
B2(ε2n,A)×A

s N 2(ds1, ds2, dx)

)
(29)

+W
(∫

D1(ε1n,A)×A
s N 1(ds1, ds2, dx),

∫
D2(ε2n,A)×A

s N 2(ds1, ds2, dx)

)
. (30)

We prove that the first summand (29) goes to zero as n → +∞. By bounding the Wasserstein
distance with the second moments as in (5) and using the properties of Poisson random measures,
(29) is bounded from above by(

2
∑
i=1,2
j=1,2

∫
Bi(εin,A)

s2
j ν

i(ds1, ds2, A) +
(∫

Bi(εin,A)
sj ν

i(ds1, ds2, A)
)2
) 1

2

Thanks to the finiteness of the integrals in (6) and (7), we may apply the dominated convergence
theorem and bring the limit as n→ +∞ inside both integrals. In order to prove that the above
expression goes to zero we thus need to show that∫

R2
+

1∩n∈NBi(εin,A)(s1, s2) skj ν
i(ds1, ds2, A) = 0,

where i, j, k = 1, 2. By absolute continuity of the integral it suffices to show that νi(∩n∈NBi(εin,A)×
A) = 0. Now, by assumptions on the family B, we know that νi(∩ε∈(0,1]Bi(ε)×A) = 0. We then
prove that

νi(∩n∈NBi(εin,A)×A) ≤ νi(∩ε∈(0,1]Bi(ε)×A) = 0, (31)
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by showing that ∩n∈NBi(εin,A) ⊂ ∩ε∈(0,1]Bi(ε). Let x ∈ ∩n∈NBi(εin,A). Since limn→+∞ ε
i
n,A = 0

by (28), for every ε ∈ (0, 1] there exists n s.t. εin,A < ε. Since Bi is an increasing family,

x ∈ Bi(εin,A) ⊂ Bi(ε). Thus x ∈ ∩ε>0Bi(ε).
As for the second summand (30), since the Lévy intensities are bounded outside of the origin
by (3), 1Di(εin,A)(s)N i(ds1, ds2, dy) is a Poisson random measure with finite mean for i = 1, 2.

Thus by (Sato, 1999, Proposition 19.5) their integrals have a compound Poisson distribution on
R2 with intensity measure

∫
A 1Di(εin,A)(s) ν

i(ds1, ds2, dy) and same total measure rn. Hence we

have ∫
Di(εin,A)×A

s N i(ds1, ds2, dx)
d
=

N i∑
j=1

Xi
j ,

where N i has a Poisson distribution with mean rn and is independent of {Xi
j | j ≥ 1}, which are

iid random variables with distribution ρirn,A,Di . Proposition 6 thus entails

W

(
N1∑
j=1

X1
j ,

N2∑
j=1

X2
j

)
≤
√
rnW(ρ1

rn,A,D1
, ρ2
rn,A,D2

) + (r2
n + rn) ‖E(X1

1 )− E(X2
1 )‖2.

Now, (r2
n + rn) ‖E(X1

1 )− E(X2
1 )‖2 is equal to(

1 +
1

rn

) ∑
i=1,2

∣∣∣∣ ∫
D1(ε1n,A)

si ν
1(ds1, ds2, A)−

∫
D2(ε2n,A)

si ν
2(ds1, ds2, A)

∣∣∣∣2,
which as n→ +∞ by the monotone convergence theorem converges to∑

i=1,2

∣∣∣∣ ∫
R2
+

si ν
1(ds1, ds2, A)−

∫
R2
+

si ν
2(ds1, ds2, A)

∣∣∣∣2 (32)

Since the vectors are in the same Fréchet class, (32) is equal to 0. The bound in (26) hence
follows by taking the limit as n goes to +∞. In order to prove its finiteness it suffices to observe
that by (5),

√
rnW(ρ1

rn,A,D1
, ρ2
rn,A,D2

) is bounded from above by the square root of

2
2∑
i=1

∫
R2
+

(s2
1 + s2

2) νi(ds1, ds2, A) +

(∫
R2
+

(s1 + s2) νi(ds1, ds2, A)

)2

,

which is finite by (6) and (7).
We now show that the limit as n goes to +∞ does not depend on the choice of compatible
families D1 and D2. First we prove that given a bivariate Lévy intensity ν with compatible
families D and D∗,

lim
n→+∞

√
rnW(ρrn,A,D, ρrn,A,D∗) = 0. (33)

For every n consider εn,A and ε∗n,A as in (27). Let then Ω(n) = D(εn,A) ∩D∗(ε∗n,A) and denote
by qn = ν(Ω(n)×A). We define

P 0
n(ds1, ds2) =

1

qn
1Ω(n)(s1, s2) ν(ds1, ds1, A)

Pn(ds1, ds2) =
1

rn − qn
1D(εn,A)\Ω(n)(s1, s2) ν(ds1, ds1, A)

P ∗n(ds1, ds2) =
1

rn − qn
1D∗(ε∗n,A)\Ω(n)(s1, s2) ν(ds1, ds1, A)

and consider the decompositions

ρrn,A,D =
qn
rn
P 0
n +

rn − qn
rn

Pn ρrn,A,D∗ =
qn
rn
P 0
n +

rn − qn
rn

P ∗n .
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By the convexity property in (25), since P 0
n is a shared component,

W(ρrn,A,D, ρrn,A,D∗) ≤
rn − qn
rn

W(Pn, P
∗
n).

Hence by (5),
√
rnW(ρrn,A,D, ρrn,A,D∗) is bounded from above by the squared root of

rn − qn
rn

4

(∫
R2
+

(s2
1 + s2

2) ν(ds1, ds2, A) +

(∫
R2
+

(s1 + s2) ν(ds1, ds2, A)

)2)
,

Since D(εn,A) \ Ω(n) ⊂ D∗(ε∗n,A)c, rn − qn = ν(D(εn,A) \ Ω(n)× A) ≤ ν(D∗(ε∗n,A)c × A). Thus,
by reasoning as in (31),

lim sup
n→+∞

rn − qn ≤ lim sup
n→+∞

ν(D∗(ε∗n,A)c ×A) = ν(∩n∈NB∗(ε∗n,A)×A) = 0.

Hence, limn→+∞ rn − qn=0 and we conclude that limrn→+∞
√
rnW(ρrn,A,D, ρrn,A,D∗)=0.

Now, consider two compatible families D∗1 and D∗2 for ν1 and ν2, respectively. By the triangular
inequality, W(ρ1

rn,A,D∗1
, ρ2
rn,A,D∗2

) is bounded from above by

W(ρ1
rn,A,D∗1

, ρ1
rn,A,D1

) +W(ρ1
rn,A,D1

, ρ2
rn,A,D2

) +W(ρ2
rn,A,D2

, ρ2
rn,A,D∗2

)

Then, thanks to (33) by taking the limit as n→ +∞,

lim
n→+∞

√
rnW(ρ1

rn,A,D∗1
, ρ2
rn,A,D∗2

) ≤ lim
n→+∞

√
rnW(ρ1

rn,A,D1
, ρ2
rn,A,D2

)

Equality follows by changing the role of (D1, D2) and (D∗1, D
∗
2) in the previous argument.

9.6 Proof of Proposition 6

We rely on the key identity (24). First we observe that E(X) = rE(X1) and E(Y ) = rE(Y1).
By considering the couplings s.t. Nx = NY a.s.,

W(X − rE(X1),Y − rE(Y 1))2

≤ inf
C((Xi)i≥1,(Y i)i≥1)

E
(∥∥∥∥ Nx∑

i=1

Xi − rE(X1)−
Nx∑
i=1

Y i + rE(Y 1)

∥∥∥∥2)

= inf
C((Xi)i≥1,(Y i)i≥1)

E
(

Var

( Nx∑
i=1

Xi
1 − rE(X1

1 )−
Nx∑
i=1

Y i
1 − rE(Y 1

1 )

∣∣∣∣Nx

))
+

+ E
(

Var

( Nx∑
i=1

Xi
2 − rE(X1

2 )−
Nx∑
i=1

Y i
2 − rE(Y 1

2 )

∣∣∣∣Nx

))
By considering couplings s.t. (Xi − Y i)i≥1 are independent and identically distributed,

≤ inf
C(X1,Y 1)

E(Nx Var(X1
1 − Y 1

1 )) + E(Nx Var(X1
2 − Y 1

2 ))

= rW(X1,X2)2 − r ‖E(X1 − Y 1)‖2.

Finally, by applying (24) we conclude the proof.
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9.7 Proof of Proposition 7

A CRV µ̃ = (µ̃1, µ̃2) is comonotonic if µ̃1 = µ̃2 a.s. By uniqueness of the Lévy intensity is suffices
to show that νco induces exchangeability. Consider the set D = {(s1, s2) | (s1, s2) ∈ R2

+, s1 6= s2}.
By definition of Poisson random measure, for every A ∈ X

P(N (D ×A) = 0) = exp{−νco(D ×A)} = 1.

Thus with probability 1,

µ̃1(A) =

∫
R2
+×A

s1N (ds1, ds2, dx) =

∫
R2
+×A

s2N (ds1, ds2, dx) = µ̃2(A).

9.8 Proof of Theorem 8

Let (X1, X2) ∼ ρr,A,D and (X,X) ∼ ρco
r,A,Dco . For every continuously differentiable function g,

we define

Kg
r,ν,A,D,Dco =

2∑
i=1

∫
R2
+

|si − F−1
X ◦ Fg(X1,X2) ◦ g (s1, s2)|2 ρr,A(ds1 ds2).

Theorem 20 guarantees that W(ρr,A,D, ρ
co
r,A,Dco)2 ≤ Kg

r,ν,A,D,Dco , and the equality holds for

g(s1, s2) = s1 + s2. In order to find the limit of rKg
r,ν,A,D,Dco as r → +∞, we must estab-

lish the conditions for the monotone convergence theorem. Since by Theorem 5 the limit does
not depend on the compatible families D and Dco, we choose D = Dg = (Bg)c defined in (10),
and Dco = D+ as in (1) of Figure 2. First rewrite the bound as

2∑
i=1

∫
R2
+

|si − S−1
X ◦ Sg(X1,X2)(g(s1, s2))|2 1(εr,A,+∞)(g(s1, s2)) ν(ds1, ds2, A),

where SX is the survival function of X. The choice Dco = D+ guarantees that SX(t) =
1
r U

π
A(t)1(ε/2,+∞)(t); see Figure 3. Thus ∀s ∈ (0, 1], S−1

X (s) = (UπA)−1(r s). On the other hand,
Sg(X1,X2)(t) = r−1 hgr,ν,A(t), where

hgr,ν,A(t) =

∫
R2
+

1(t,+∞)(g(t1, t2))1(εr,A,+∞)(g(t1, t2)) ν(dt1, dt2, A).

Thus rKg
r,ν,A,Dg ,D+ is equal to

2∑
i=1

∫
R2
+

|si − (UπA)−1(hgr,ν,A(g(s1, s2)))|2 1(εr,A,+∞)(g(s1, s2)) ν(ds1, ds2, A).

Since for every (s1, s2) in the domain of integration g(s1, s2) > εr,A, every (t1, t2) s.t. g(t1, t2) >
g(s1, s2) satisfies g(t1, t2) > εr,A. Thus for every (s1, s2) in the domain of integration,

hgr,ν,A(g(s1, s2)) =

∫
R2
+

1(g(s1,s2),+∞)(g(t1, t2)) ν(dt1, dt2, A) = hgν,A(g(s1, s2)),

where hgν,A is defined in (12). The statement in (14) follows by the monotone convergence theo-
rem as r → +∞.
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9.9 Proof of Theorem 9

We first provide a preliminary result, whose proof we report because it does not seem to be
readily available in the literature.

Lemma 21. Let f : R+ → R+ be an integrable non–increasing function and f−1(x) = sup{t | f(t) ≤
x} its generalized inverse. Then∫ +∞

0
f(x) dx =

∫ +∞

0
f−1(z) dz.

Proof. Consider the change of variable z = f(x). Since f is integrable, limx→+∞ f(x) = 0.
Moreover since f is monotone its derivative is well defined almost everywhere. Thus∫ +∞

0
f(x) dx = −

∫ f(0)

0
z

1

f ′(f−1(z))
dz = −

∫ +∞

0
z (f−1)

′
(z) dz

having set f(0) = limx→0+ f(x) ∈ [0,+∞]. By integration by parts this is equal to

= −z f−1(z)
∣∣f(0)

0
+

∫ f(0)

0
f−1(z) dz.

If f(0) < +∞, the first summand is clearly 0. Otherwise, we observe that

−z f−1(z)
∣∣+∞
0

= x f(x)
∣∣+∞
0

= 0,

because of the integrability assumption. Thus in either case,∫ +∞

0
f(x) dx =

∫ f(0)

0
f−1(z) dz =

∫ +∞

0
f−1(z) dz,

since if f(0) < +∞, f−1 is equal to zero on the interval (f(0),+∞).

Theorem 8 ensures that the limit, as r → +∞, of rW(ρr,A,D, ρ
co
r,A,Dco) is equal to

2

∫
R2
+

∣∣∣∣s1 − (UπA)−1

(∫
R2
+

1(s1+s2,+∞)(t1 + t2) ν(t1, t2) dt1 dt2

)∣∣∣∣2 ν(s1, s2, A) ds1 ds2.

By expanding the square of the binomial, the integral is divided in three summands. We treat
them separately. First ∫

R2
+

s2
1 ν(s1, s2, A) ds1 ds2 =

∫
R+

s2
1 π(s1, A) ds1.

Next, with a change of variable (z1, z2) = (s1, s1 + s2),∫
R2
+

(UπA)−1

(∫
{t1+t2>s1+s2}

ν(t1, t2, A) dt1 dt2

)2

ν(s1, s2, A) ds1 ds2 (34)

=

∫ +∞

0
(UπA)−1

(∫
{t1+t2>z2}

ν(t1, t2, A) dt1 dt2

)2(∫ z2

0
ν(z1, z2 − z1, A) dz1

)
dz2

Simple calculations on the derivative of an integral lead to

d

dz

∫
{t1+t2>z}

ν(t1, t2, A) dt1 dt2 =

∫ z

0
ν(t1, z − t1, A) dt1
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Thus with a change of variable s =
∫
{t1+t2>z2} ν(t1, t2, A) dt1 dt2, the integral in (34) is equal to∫ +∞

0 (Uπ)−1(s)2 ds. The function UπA(
√
s) is non–decreasing and has inverse |(UπA)−1(s)|2. By

applying Lemma 21, its integral on (0,+∞) is equal to∫ +∞

0
UπA(
√
s) ds =

∫ +∞

0

∫ +∞

√
s

π(dt, A) ds =

∫ +∞

0
t2 π(dt, A)

Finally, the expression of the third summand, which is equal to Kν,A in the statement, derives
from the same change of variables.

9.10 Proof of Theorem 10

The proof is similar to the one of Theorem 9. By looking at the support of the Lévy intensity
in Figure 4, Theorem 8 ensures that the limit as r → +∞ of rW(ρr,A,D, ρ

co
r,A,Dco) is equal to

2

∫
R2
+

|s1 − (UπA)−1(2UπA(s1 + s2))|2 ν(s1, s2, A) ds1 ds2.

As in the previous proof, the integral is divided in three summands, which we treat separately.∫
R2
+

s2
1 ν(s1, s2, A) ds1 ds2 =

∫
R+

s2
1 π(s1, A) ds1.

Next, by looking at the support of the Lévy intensity,∫
R2
+

(UπA)−1(2UπA(s1 + s2))2 ν(s1, s2, A) ds1 ds2

= 2

∫ ∞
0

(UπA)−1(2UπA(s))2 π(s,A) ds.

Since d
dsU

π
A(s) = −π(s,A), with a change of variable s = 2UπA(s), it is equal to

∫ +∞
0 (Uπ)−1(s)2 ds.

By reasoning as in Theorem 9, this is equal to
∫
R+
s2

1 π(s1, A) ds1 as well. Finally, since the in-
tegrand is equal to zero on the vertical axis, we have∫

R2
+

s1 (UπA)−1(2UπA(s1 + s2)) ν(s1, s2, A) ds1 ds2

=

∫ ∞
0

s1 (UπA)−1(2UπA(s1))π(s1, A) ds1.

9.11 Proof of Theorem 13

The proof is based on Theorem 9. Since the Lévy intensities are homogeneous, we apply (16).
The marginals are gamma random measures of shape parameter 1, thus Uπ(t) = E1(t) and∫ +∞

0
s2 π(s) ds =

∫ +∞

0
s e−s ds = 1.

As for the other quantities appearing in (16), we observe that if ρφ is the density of a gamma(φ, 1)
distribution,∫

R2
+

1(t,+∞)(z1 + z2) ν(z1, z2) dz1 dz2

=

∫ 1

0

(∫
R2
+

1(t,+∞)(z1 + z2) ρφ

(
z1

u

)
ρφ

(
z2

u

)
1

u2
dz1 dz2

)
(1− u)φ−1

u
du
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With a change of variables (v1, v2) =
(
z1
u ,

z2
u

)
,

=

∫ 1

0

(∫
R2
+

1( t
u
,+∞

)(v1 + v2) ρφ(v1) ρφ(v2) dv1 dv2

)
(1− u)φ−1

u
du

=

∫ 1

0
P
{
X1 +X2 >

t

u

}
(1− u)φ−1

u
du,

where X1, X2
iid∼ gamma(φ, 1) random variables. Thus X1 +X2 ∼ gamma(2φ, 1) and its survival

function in t
u is equal to

Γ
(

2φ, t
u

)
Γ(2φ) . Next, we observe that∫ t

0
s ν(s, t− s) ds =

=

∫ 1

0

(1− u)φ−1

u3

(∫ t

0
s ρφ

(
s

u

)
ρφ

(
t− s
u

)
ds

)
du

With a change of variable v = s
u ,

=

∫ 1

0

(1− u)φ−1

u

(∫ t
u

0
v ρφ(v) ρφ

(
t

u
− v
)
ds

)
du.

Now, v ρφ(v) = φ ρφ+1(v). Thus the inner integral is φ times the convolution of ρφ and ρφ+1

evaluated in t
u . Now, if X ∼ gamma(φ, 1) is independent from Y ∼ gamma(φ+ 1, 1), X + Y ∼

gamma(2φ+ 1, 1). Thus∫ t
u

0
v ρφ(v) ρφ

(
t

u
− v
)
ds =

φ

Γ(2φ+ 1)
e−

t
u

(
t

u

)2φ

,

from which the final expression for the integral easily follows. We now sketch the proof for φ
integer:

Γ

(
2φ,

t

u

)
= (2φ− 1)!e−

t
u

2φ−1∑
k=0

1

k!

(
t

u

)k
.

Thus e(φ, t) is equal to
2φ−1∑
k=0

tk

k!

∫ 1

0
e−

t
u (1− u)φ−1u−k−1du,

which coincides with a sum over k of f(φ, k, t). In order to derive the expression for f(φ, n, t)
for a generic integer n, we apply the binomial formula

(1− u)φ−1 =

φ−1∑
j=0

(
φ− 1
j

)
(−u)j ,

from which we easily derive

g(n, j, t) =

∫ 1

0
e−

t
uu−n−1+jdu = t−n+j Γ(n− j, t).

The final expression derives from writing Γ(k, t) as a sum, both when k is a positive integer and
when it is a negative one.
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9.12 Proof of Theorem 14

By resorting to (19), one derives the expression for ν(ds1, ds2, A):

αP0(A) (1 + θ) (E1(s1)−θ + E1(s2)−θ)−
1
θ
−2E1(s1)−θ−1E1(s2)−θ−1 e

−(s1+s2)

s1s2
ds1ds2.

We obtain the bound by applying Theorem 8 to the function

g(s1, s2) = E1(s1)−θ + E1(s2)−θ,

which trivially satisfies the necessary conditions. Since g is symmetric, Kg
ν,A is equal to

2α

∫
R2
+

∣∣∣∣s1 − (Uπ)−1

(∫
R2
+

1[g(s1,s2),+∞)(g(t1, t2)) ν(t1, t2) dt1 dt2

)∣∣∣∣2 ν(s1, s2) ds1 ds2.

With a change of variables (x1, x2) =
(
E1(s1)−θ, E1(s2)−θ

)
,∫

R2
+

1(g(s1,s2),+∞)(g(t1, t2)) ν(t1, t2) dt1 dt2

=
1 + θ

θ2

∫ +∞

0

∫ +∞

max(g(s1,s2)−t1,0)
(t1 + t2)−

1
θ
−2dt1 dt2 =

1 + θ

θ
g(s1, s2)−

1
θ

Then, with the same change of variable, the bound can be rewritten as

2α
1 + θ

θ2

∫ ∞
0

∫ ∞
0

∣∣∣∣E−1
1

(
x
− 1
θ

1

)
− E−1

1

(
1 + θ

θ
(x1 + x2)−

1
θ

)∣∣∣∣2(x1 + x2)−
1
θ
−2dx1 dx2

=2α
1 + θ

θ2

∫ ∞
0

∫ ∞
y1

∣∣∣∣E−1
1

(
y
− 1
θ

1

)
− E−1

1

(
1 + θ

θ
y
− 1
θ

2

)∣∣∣∣2y− 1
θ
−2

2 dy1 dy2

We expand the binomial and treat the three terms separately.∫ ∞
0

∫ ∞
y1

E−1
1

(
y
− 1
θ

1

)2
y
− 1
θ
−2

2 dy1 dy2 =
θ2

1 + θ

∫ +∞

0
E−1

1

(
x)2dx =

θ2

1 + θ
.

Similarly, ∫ ∞
0

∫ ∞
y1

E−1
1

(
1 + θ

θ
y
− 1
θ

2

)2

y
− 1
θ
−2

2 dy1 dy2 =
θ2

1 + θ

Thus dW(µ̃, µ̃co)2 ≤ 4 c. In order to conclude it suffices to show that

lim
θ→+∞

1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y
− 1
θ

1

)
E−1

1

(
1 + θ

θ
y
− 1
θ

2

)
y
− 1
θ
−2

2 dy1 dy2 = 1.

Since for every a, b ∈ R, (a− b)2 ≥ 0, the integral is smaller or equal to 1. Thus it is enough to
prove it to be greater or equal to 1. We observe that since y1 ≤ y2,

1 + θ

θ
y
− 1
θ

2 ≤ 1 + θ

θ
y
− 1
θ

1 .
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Since E1 is a decreasing function, so is its inverse. Thus

1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y
− 1
θ

1

)
E−1

1

(
1 + θ

θ
y
− 1
θ

2

)
y
− 1
θ
−2

2 dy1 dy2

≥ 1 + θ

θ2

∫ ∞
0

∫ ∞
y1

E−1
1

(
y
− 1
θ

1

)
E−1

1

(
1 + θ

θ
y
− 1
θ

1

)
y
− 1
θ
−2

2 dy1 dy2

=
1

θ

∫ ∞
0

E−1
1

(
y
− 1
θ

1

)
E−1

1

(
1 + θ

θ
y
− 1
θ

1

)
y
− 1
θ
−1

1 dy1

=
θ

1 + θ

∫ ∞
0

E−1
1

(
θ

1 + θ
x

)
E−1

1 (x)dx

≥ θ

1 + θ

∫ ∞
0

E−1
1 (x)2dx =

θ

1 + θ
,

which by taking the limit as θ → +∞ is equal to 1.

9.13 Proof of Proposition 15

We point out that ξ̃
d
= µ̃ind + µ̃co

0 and ξ̃co d
= µ̃co + µ̃co

0 . Since by construction µ̃ind ⊥ µ̃co
0 and

µ̃co ⊥ µ̃co
0 , by (23)

W(ξ̃(A), ξ̃co(A)) ≤ W(µ̃ind(A), µ̃co(A)) +W(µ̃co
0 (A), µ̃co

0 (A)),

which is equal to W(µ̃ind(A), µ̃co(A)). By taking the supremum over A ∈ X we achieve the

first statement. A very similar proof can be carried on for the second, by observing that ξ̃ind d
=

µ̃ind + µ̃ind
0 .

9.14 Proof of Lemma 17

Let {A1, · · ·An} in X be disjoint sets. Then for i = 1, . . . , n the random vectors µ̃f (Ai) =∫
Ai
f(x)µ̃(dx) are independent since f is deterministic and µ̃(A1), · · · µ̃(An) are independent.

This proves that µ̃f is a CRV. The Lévy intensity νf may be found through the joint Laplace

functional transform, E(e−
∫
g1(x)µ̃1(dx)−

∫
g2(x)µ̃2(dx)) for every pair of measurable functions g1, g2 :

X→ R+, which characterizes the law of a CRV µ̃ = (µ̃1, µ̃2):

E
(
e−

∫
X g1(x)µ̃f,1(dx)−

∫
X g2(x)µ̃f,2(dx)

)
=

= exp
{
−
∫
R2
+×X

[1− e−(s1g1(x)−s2g2(x))f(x)]ν(ds1, ds2, dx)
}

=

= exp
{
−
∫
R2
+×X

[1− e−s1g1(x)−s2g2(x)](pf#ν)(ds1, ds2, dx)
}
,

where pf (s1, s2, x) = (s1f(x), s2f(x), x).

9.15 Proof of Proposition 18

Denote µ̃t = µ̃k(t|·) in the notation of Lemma 17, so that h̃(t)
d
= µ̃t(R). By definition of GM–

dependence, µ̃t(dy) = k(t|y)µ̃ind(dy) + k(t|y)µ̃co
0 (dy). If k(t|x) = β1[0,t](x) and µ̃ is a gamma

CRM, by (Catalano et al., 2020, Lemma 6 & Example 3), k(t|x)µ̃(dx) has Lévy measure

π(ds, dx) =
e
− s
β

s
1(0,+∞)(s)1(0,t)(x) ds,

which corresponds to the generalized gamma CRM with parameters b = β−1, σ = 0, α = t and
P0 = Unif([0, t]). Thus, µ̃t is a special case of GM-dependent CRV with generalized gamma
marginals. We conclude by Corollary 16.
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of Lévy processes. Electron. J. Statist. 12, 2482–2514.

32



Müller, P., Quintana, F. & Page, G. (2018). Nonparametric bayesian inference in applica-
tions (with discussion). Stat. Methods Appl. 27, 175–251.

Müller, P., Quintana, F. A., Jara, A. & Hanson, T. (2015). Bayesian nonparametric
data analysis. Springer.

Nguyen, X. (2013). Convergence of latent mixing measures in finite and infinite mixture models.
Ann. Statist. 41, 370–400.

Nguyen, X. (2016). Borrowing strengh in hierarchical bayes: Posterior concentration of the
dirichlet base measure. Bernoulli 22, 1535–1571.

Panaretos, V. M. & Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annual
Review of Statistics and Its Applications. 6, 405–431.

Peccati, G. & Prünster, I. (2008). Linear and quadratic functionals of random hazard rates:
An asymptotic analysis. Ann. Appl. Probab. 18, 1910–1943.

Rachev, S. (1985). The Monge-Kantorovich mass transference problem and its stochastic
applications. Theory Probab. Appl. 29, 647–676.

Regazzini, E., Lijoi, A. & Prünster, I. (2003). Distributional results for means of normalized
random measures with independent increments. Ann. Statist. 31, 560–585.

Riva-Palacio, A. & Leisen, F. (2019). Compound vectors of subordinators and their associ-
ated positive lvy copulas. arXiv 1909.12112 .
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